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Preface
Scientists, engineers, and quantitative data analysts face many challenges nowadays. 
Data scientists want to be able to do numerical analysis of large datasets with minimal 
programming effort. They want to write readable, efficient, and fast code, that is as close 
as possible to the mathematical language package they are used to. A number of accepted 
solutions are available in the scientific computing world.

The C, C++, and Fortran programming languages have their benefits, but they are not 
interactive  and are considered too complex by many. The common commercial alternatives 
are, among others, Matlab, Maple, and Mathematica. These products provide powerful 
scripting languages, however, they are still more limited than any general purpose 
programming language. There are other open source tools similar to Matlab such as R, GNU 
Octave, and Scilab. Obviously, they also lack the power of a language such as Python.

Python is a popular general purpose programming language widely used by in the scientific 
community. You can access legacy C, Fortran, or R code easily from Python. It is object- 
oriented and considered more high-level than C or Fortran. Python allows you to write 
readable and clean code with minimal fuss. However, it lacks a Matlab equivalent out of the 
box. That's where NumPy comes in. This book is about NumPy and related Python libraries 
such as SciPy and Matplotlib.

What is NumPy?
NumPy (from Numerical Python) is an open source Python library for scientific computing. 
NumPy lets you work with arrays and matrices in a natural way. The library contains 
a long list of useful mathematical functions including some for linear algebra, Fourier 
transformation, and random number generation routines. LAPACK, a linear algebra library, 
is used by the NumPy linear algebra module if you have LAPACK installed on your system; 
otherwise NumPy provides its own implementation. LAPACK is a well known library originally 
written in Fortran—which Matlab relies on as well. In a sense, NumPy replaces some of the 
functionality of Matlab and Mathematica, allowing rapid interactive prototyping.
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We will not be discussing NumPy from a developing contributor's perspective, but more from 
a user's perspective. NumPy is a very active project and has a lot of contributors. Maybe, one 
day you will be one of them!

History
NumPy is based on its predecessor, Numeric. Numeric was first released in 1995 and has  
a deprecated status now. Neither Numeric nor NumPy made it into the standard Python 
library for various reasons. However, you can install NumPy separately. More about that  
in the next chapter.

In 2001, a number of people inspired by Numeric created SciPy—an open source Python 
scientific computing library that provides functionality similar to that of Matlab, Maple, and 
Mathematica. Around this time, people were growing increasingly unhappy with Numeric. 
Numarray was created as alternative for Numeric. Numarray is currently also deprecated. 
Numarray was better in some areas than Numeric, but worked very differently. For that 
reason, SciPy kept on depending on the Numeric philosophy and the Numeric array object. 
As is customary with new "latest and greatest" software, the arrival of Numarray led to 
the development of an entire whole ecosystem around it with a range of useful tools. 
Unfortunately, the SciPy community could not enjoy the benefits of this development. It is 
quite possible that some Pythonista has decided to neither choose neither one nor the  
other camp.

In 2005, Travis Oliphant, an early contributor to SciPy, decided to do something about 
this situation. He tried to integrate some of the Numarray features into Numeric. A 
complete rewrite took place that culminated into the release of NumPy 1.0 in 2006. At 
this time, NumPy has  all of the features of Numeric and Numarray and more. Upgrade 
tools are available to facilitate the upgrade from Numeric and Numarray. The upgrade is 
recommended since Numeric and Numarray are not actively supported any more.

Originally the NumPy code was part of SciPy. It was later separated and is now used by SciPy 
for array and matrix processing.

Why use NumPy?
NumPy code is much cleaner than "straight" Python code that tries to accomplish the  
same task. There are fewer loops required because operations work directly on arrays 
and matrices. The many convenience and mathematical functions make life easier as well. 
The underlying algorithms have stood the test of time and have been designed with high 
performance in mind.

                 

       



Preface

[ 3 ]

NumPy's arrays are stored more efficiently than an equivalent data structure in base Python 
such as a list of lists. Array I/O is significantly faster too. The performance improvement 
scales with the number of elements of an array. It really pays off to use NumPy for large 
arrays. Files as large as several terabytes can be memory-mapped to arrays leading to 
optimal reading and writing of data. The drawback of NumPy arrays is that they are more 
specialized than plain lists. Outside of the context of numerical computations, NumPy arrays 
are less useful. The technical details of NumPy arrays will be discussed in later chapters.

Large portions of NumPy are written in C. That makes NumPy faster than pure Python  
code. A NumPy C API  exists as well. It allows further extension of the functionality with  
the help of the C language of NumPy. The C API falls outside the scope of the book. Finally, 
since NumPy is open source, you get all the added advantages. The price is the lowest 
possible—free as in 'beer'. You don't have to worry about licenses every time somebody 
joins your team or you need an upgrade of the software. The source code is available to 
everyone. This, of course, is beneficial to the code quality.

Limitations of NumPy
There is one important thing to know if you are planning to create Google App Engine 
applications. NumPy is not supported within the Google App Engine sandbox. NumPy is 
deemed "unsafe" partly because it is written in C.

If you are a Java programmer, you may be interested in Jython, the Java implementation of 
Python. In that case, I have bad news for you. Unfortunately, Jython runs on the Java Virtual 
Machine and cannot access NumPy because NumPy's modules are mostly written in C. You 
could say that Jython and Python are from two totally different worlds, although they do 
implement the same specification.

The stable release of NumPy, at the time of writing, supported Python 2.4 to 2.6.x, and now 
also supports Python 3.

What this book covers
Chapter 1, NumPy Quick Start, will guide you through the steps needed to install NumPy on 
your system and create a basic NumPy application.

Chapter 2, Beginning with NumPy Fundamentals, introduces you to NumPy arrays and 
fundamentals.

Chapter 3, Get into Terms with Commonly Used Functions, will teach you about the most 
commonly used NumPy functions—the basic mathematical and statistical functions.
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Chapter 4, Convenience Functions for Your Convenience, will teach you about functions that 
make working with NumPy easier. This includes functions that select certain parts of your 
arrays, for instance based on a Boolean condition. You will also learn about polynomials and 
manipulating the shape of NumPy objects.

Chapter 5, Working with Matrices and ufuncs, covers matrices and universal functions. 
Matrices are well known in mathematics and have their representation in NumPy as well. 
Universal functions (ufuncs) work on arrays element-by-element or on scalars. ufuncs expect 
a set of scalars as input and produce a set of scalars as output.

Chapter 6, Move Further with NumPy Modules, discusses how universal functions can 
typically be mapped to mathematical counterparts such as add, subtract, divide, multiply, 
and so on. NumPy has a number of basic modules that will be discussed in this chapter.

Chapter 7, Peeking into Special Routines, describes some of the more specialized NumPy 
functions. As NumPy users, we sometimes find ourselves having special needs. Fortunately, 
NumPy provides for most of our needs.

Chapter 8, Assured Quality with Testing, will teach you how to write NumPy unit tests.

Chapter 9, Plotting with Matplotlib, discusses how NumPy on its own cannot be used to 
create graphs and plots. This chapter covers (in-depth) Matplotlib, a very useful Python 
plotting library. Matplotlib integrates nicely with NumPy and has plotting capabilities 
comparable to Matlab.

Chapter 10, When NumPy is Not Enough: SciPy and Beyond, discuss how SciPy and NumPy 
are historically related. This chapter goes into more detail about SciPy. SciPy, as mentioned 
in the History section, is a high level Python scientific computing framework built on top of 
NumPy. It can be used in conjunction with NumPy.

What you need for this book
To try out the code samples in this book, you will need a recent build of NumPy. This means 
that you will need to have one of the Python versions supported by NumPy as well. Some 
code samples make use of Matplotlib for illustration purposes. Matplotlib is not strictly 
required to follow the examples, but it is recommended that you  install it too. The last 
chapter is about SciPy and has one example involving SciKits.

Here is a list of software used to develop and test the code examples:

 � Python 2.6

 � NumPy 2.0.0.dev20100915

 � SciPy 0.9.0.dev20100915
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 � Matplotlib 1.0.0

 � Ipython 0.10

Needless to say, you don't need to have exactly this software and these versions on your 
computer. Python and NumPy is the absolute minimum you will need.

Who this book is for
This book is for you the scientist, engineer, programmer, or analyst looking for a high quality 
open source mathematical library. Knowledge of Python is assumed. Also, some affinity or at 
least interest in mathematics and statistics is required.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.
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Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use  
of the include directive."

A block of code is set as follows: 

[def pythonsum(n):
  a = range(n)
  b = range(n)
  c = []
  for i in range(len(a)):
    a[i] = i ** 2
    b[i] = i ** 3
    c.append(a[i] + b[i])
    return c

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

[def pythonsum(n):
  a = range(n)
  b = range(n)
  c = []
  for i in range(len(a)):
    a[i] = i ** 2
    b[i] = i ** 3
    c.append(a[i] + b[i])
    return c

Any command-line input or output is written as follows:

sudo apt-get install python

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "clicking the Next button 
moves you to the next screen".
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the 
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can 
visit http://www.PacktPub.com/support and register to have the files e-mailed directly 
to you.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details 
of your errata. Once your errata are verified, your submission will be accepted and the  
errata will be uploaded on our website, or added to any list of existing errata under the 
Errata section of that title. Any existing errata can be viewed by selecting your title from 
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

                 

       



1
NumPy Quick Start

Let's get started. We will install NumPy on different operating systems and 
have a look at some simple code that uses NumPy. The IPython interactive shell 
is introduced briefly. As mentioned in the preface, SciPy is closely related to 
NumPy, so you will see the SciPy name appearing here and there. At the end of 
this chapter, you will find pointers on how to find additional information online 
if you get stuck or are uncertain about the best way to solve problems.

In this chapter, we shall:

 � Install Python and NumPy on Windows

 � Install Python and NumPy on Linux

 � Install Python and NumPy on Macintosh

 � Write simple NumPy code

 � Get to know IPython

 � Browse online documentation and resources

Python
NumPy is based on Python, so it is required to have Python installed. On some operating 
systems, Python is already installed. You, however, need to check whether the Python 
version corresponds with the NumPy version you want to install.
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Time for action – installing Python on different 
operating systems

NumPy has binary installers for Windows, various Linux distributions and Mac OS X. There is 
also a source distribution, if you prefer that. You need to have Python 2.4.x or above installed 
on your system. We will go through the various steps required to install Python on the 
following operating systems:

1. Debian and Ubuntu: Python might already be installed on Debian and Ubuntu but 
the development headers are usually not. On Debian and Ubuntu install python and 
python-dev with the following commands:

sudo apt-get install python
sudo apt-get install python-dev

2. Windows: The Windows Python installer can be found at www.python.org/
download. On this website, we can also find installers for Mac OS X and source 
tarballs for Linux, Unix, and Mac OS X.

3. Mac: Python comes pre-installed on Mac OS X. We can also get Python through 
MacPorts, Fink, or similar projects.

We can install, for instance, the Python 2.6 port by running the following command:

sudo port install python26

LAPACK does not need to be present but, if it is, NumPy will detect it and use it 
during the installation phase. It is recommended to install LAPACK for serious 
numerical analysis.

What just happened?
We installed Python on Debian, Ubuntu, Windows, and the Mac.

Downloading the example code

You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this 
book elsewhere, you can visit http://www.PacktPub.com/support and 
register to have the files e-mailed directly to you.

Windows
Installing NumPy on Windows is straightforward. You only need to download an installer, and 
a wizard will guide you through the installation steps.
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Time for action – installing NumPy on Windows
Installing NumPy on Windows is necessary but, fortunately, a straightforward task. The 
actions we will take are as follows:

1. Download the NumPy installer: Download a NumPy installer for Windows from the 
SourceForge website http://sourceforge.net/projects/numpy/files/

Choose the appropriate version. In this example, we chose numpy-1.5.1-win32-
superpack-python2.6.exe.

2. Open the installer: Open the EXE installer by double clicking on it.

3. NumPy features: Now, we see a description of NumPy and its features. Click Next. 
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4. Install Python: If you have Python installed, it should automatically be detected. If 
it is not detected, maybe your path settings are wrong. At the end of this chapter, 
resources are listed in case you have problems with installing NumPy:

5. Finish the installation: In this example, Python 2.6 was found. Click Next if Python 
is found; otherwise, click Cancel and install Python (NumPy cannot be installed 
without Python). Click Next. This is the point of no return. Well, kind of, but it is best 
to make sure that you are installing to the proper directory and so on and so forth. 
Now the real installation starts. This may take a while:
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What just happened?
We installed NumPy on Windows.

Linux
Installing NumPy on Linux depends on the distribution you have. We will discuss how you 
would install NumPy from the command line, although you could probably use graphical 
installers; it depends on your distribution (distro).

Time for action – installing NumPy on Linux
Most Linux distributions have NumPy packages. We will go through the necessary steps for 
some of the popular Linux distros:

1. Installing NumPy on Red Hat: Run the following instructions from the 
command line:

yum install python-numpy

2. Installing NumPy on Mandriva: To install NumPy on Mandriva, run the following 
command line instruction:

urpmi python-numpy

3. Installing NumPy on Gentoo: To install NumPy on Gentoo run the following 
command line instruction:

sudo emerge numpy

4. Installing NumPy on Debian and Ubuntu: On Debian or Ubuntu, we need to type 
the following:

sudo apt-get install python-numpy

The following table gives an overview of the Linux distributions and corresponding NumPy 
package names.

Linux distribution Package name

Arch Linux python-numpy

Debian python-numpy

Fedora numpy

Gentoo dev-python/numpy

OpenSUSE python-numpy, python-numpy-devel

Slackware numpy
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What just happened?
We installed NumPy on various Linux distributions.

Mac OS X
You can install NumPy on the Mac with a graphical installer or from the command-line from  
a port manager such as MacPorts or Fink, depending on your preference.

Time for action – installing NumPy on Mac OS X 
with a GUI installer

We will install NumPy with a GUI installer.

1. Download the GUI installer: We can get a NumPy installer from the SourceForge 
website http://sourceforge.net/projects/numpy/files/. Download 
the appropriate DMG file. Usually the latest one is the best:

2. Open the DMG file: Open the DMG file (in this example, numpy-1.5.1-py2.6-
python.org-macosx10.3.dmg):
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 � Double-click on the icon of the opened box, the one having a subscript that 
ends with .mpkg. We will be presented with the welcome screen of the 
installer.

 � Click on the Continue button to go to the Read Me screen, where we will be 
presented with a short description of NumPy:

 � Continue to the License screen.
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3. Accept the license: Read the license, click Continue and then the Accept button, 
when prompted to accept the license. Continue through the next screens and click 
Finish at the end.

What just happened?
We installed NumPy on Mac OS X with a GUI installer.

Time for action – installing NumPy with MacPorts or Fink
Alternatively we can install NumPy through the MacPorts route. It is shown as follows:

1. Installing with MacPorts: Type the following command:

sudo port install py-numpy

2. Installing with Fink: Fink also has packages for NumPy—scipy-core-py24, 
scipy-core-py25, and scipy-core-py26. We can install the one for 
Python 2.6 with the following package:

fink install scipy-core-py26

What just happened?
We installed NumPy on Mac OS X with MacPorts and Fink.

Building from source
We can retrieve the source code for NumPy with git. This is shown as follows:

git clone git://github.com/numpy/numpy.git numpy

Install /usr/local with the following command:

python setup.py build

sudo python setup.py install --prefix=/usr/local

To build, we need a C compiler such as GCC and the Python header files in the python-dev 
or python-devel package.

Vectors
NumPy arrays are more efficient than Python lists, when it comes to numerical operations. 
NumPy code requires less explicit loops than equivalent Python code.
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Time for action – adding vectors
Imagine that we want to add two vectors called a and b. Vector a holds the squares of 
integers 0 to n, for instance, if n = 3, then a = (0, 1, 4). Vector b holds the cubes of integers 0 
to n, so if n = 3, then b = (0, 1, 8). How would you do that using plain Python? After we come 
up with a solution, we will compare it with the NumPy equivalent.

1. Adding vectors using pure Python: The following function solves the vector addition 
problem using pure Python without NumPy:

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
       c.append(a[i] + b[i])

   return c

2. Adding vectors using NumPy: Following is a function that achieves the same 
with NumPy.

def numpysum(n):
  a = numpy.arange(n) ** 2
  b = numpy.arange(n) ** 3
  c = a + b
  return c

Notice that numpysum() does not need a for loop. Also, we used the arange function 
from NumPy that creates a NumPy array for us with integers 0 to n. The arange function 
was imported; that is why it is prefixed with numpy.

Now comes the fun part. Remember that it is mentioned in the preface that NumPy is faster 
when it comes to array operations. How much faster is Numpy, though? The following 
program will show us by measuring the elapsed time in microseconds, for the numpysum and 
pythonsum functions. It also prints the last two elements of the vector sum. Let's check that 
we get the same answers by using Python and NumPy:

import sys
from datetime import datetime
import numpy

def numpysum(n):
  a = numpy.arange(n) ** 2
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  b = numpy.arange(n) ** 3
  c = a + b
  return c

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
       c.append(a[i] + b[i])

   return c

size = int(sys.argv[1])
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "PythonSum elapsed time in microseconds", delta.microseconds
start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "NumPySum elapsed time in microseconds", delta.microseconds

The output of the program for 1000, 2000, and 3000 vector elements is as follows:

$ python vectorsum.py 1000

The last 2 elements of the sum [995007996, 998001000]

PythonSum elapsed time in microseconds 707

The last 2 elements of the sum [995007996 998001000]

NumPySum elapsed time in microseconds 171

$ python vectorsum.py 2000

The last 2 elements of the sum [7980015996, 7992002000]

PythonSum elapsed time in microseconds 1420

The last 2 elements of the sum [7980015996 7992002000]

NumPySum elapsed time in microseconds 168
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$ python vectorsum.py 4000

The last 2 elements of the sum [63920031996, 63968004000]

PythonSum elapsed time in microseconds 2829

The last 2 elements of the sum [63920031996 63968004000]

NumPySum elapsed time in microseconds 274

What just happened?
Clearly, NumPy is much faster than the equivalent normal Python code. One thing is certain; 
we get the same results whether we are using NumPy or not. However, the result that is 
printed differs in representation. Notice that the result from the numpysum function does 
not have any commas. How come? Obviously we are not dealing with a Python list but with 
a NumPy array. It was mentioned in the preface that NumPy arrays are specialized data 
structures for numerical data. We will learn more about NumPy arrays in the next chapter.

Pop Quiz - functioning of arange function 
1. What does arange(5) do?

 � Creates a Python list of 5 elements with values 1 to 5.

 � Creates a Python list of 5 elements with values 0 to 4.

 � Creates a NumPy array with values 1 to 5.

 � Creates a NumPy array with values 0 to 4.

 � None of the above.

Have a go hero – continue the analysis
The program we used here to compare the speed of NumPy and regular Python is not very 
scientific. We should at least repeat each measurement a couple of times. It would be nice to 
be able to calculate some statistics such as average times, and so on. Also, you might want to 
show plots of the measurements to friends and colleagues.

Hints to help you can be found throughout this book and in the online 
documentation and resources listed at the end of this chapter. NumPy 
has, by the way, statistical functions that can calculate averages for you. I 
recommend using matplotlib to produce plots.
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IPython—an interactive shell
Scientists and engineers are used to experimenting. IPython was created by scientists with 
experimentation in mind. The interactive environment that IPython provides is viewed by 
many as a direct answer to Matlab, Mathematica, and Maple. You can find more information, 
including installation instructions, at: http://ipython.org/

IPython is free, open source, and available for Linux, Unix, Mac OS X, and Windows. The 
IPython authors only request that you cite IPython in scientific work where IPython was 
used. Here is the list of features of IPython:

 � Tab completion

 � History mechanism

 � Inline editing

 � Ability to call external Python scripts with %run

 � Access to system commands

 � Pylab switch

 � Access to Python debugger and profiler

The Pylab switch imports all the Scipy, NumPy, and Matplotlib packages. Without this 
switch, we would have to import every package we need ourselves.

All we need to do is enter the following instruction on the command line:

$ ipython -pylab

Python 2.6.1 (r261:67515, Jun 24 2010, 21:47:49) 

Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.

?         -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help      -> Python's own help system.

object?   -> Details about 'object'. ?object also works, ?? prints more.

  Welcome to pylab, a matplotlib-based Python environment.

  For more information, type 'help(pylab)'.

In [1]: quit()

quit() or Ctrl + D quits the IPython shell. We might want to be able to go back to our 
experiments. In IPython, it is easy to save a session for later.

In [1]: %logstart

Activating auto-logging. Current session state plus future input saved.
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Filename       : ipython_log.py

Mode           : rotate

Output logging : False

Raw input log  : False

Timestamping   : False

State          : active

Let's say we have the vector addition program that we made in the current directory. We can 
run the script as follows:

In [1]: ls

README        vectorsum.py

In [2]: %run -i vectorsum.py 1000

As you probably remember, 1000 specifies the number of elements in a vector. The -d switch 
of %run starts an ipdb debugger with 'c' the script is started. 'n' steps through the code. 
Typing quit at the ipdb prompt exits the debugger.

In [2]: %run -d vectorsum.py 1000

*** Blank or comment

*** Blank or comment

Breakpoint 1 at: /Users/ivanidris/Documents/numpyBeginnersGuide/book/
ch1code/vectorsum.py:3

Enter c at the ipdb> prompt to start your script.

><string>(1)<module>()

ipdb> c

> /Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.
py(3)<module>()

      2

1---> 3 import sys

      4 from datetime import datetime

ipdb> n

>

/Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.
py(4)<module>()

1     3 import sys

----> 4 from datetime import datetime
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      5 import numpy

ipdb> n

> /Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.
py(5)<module>()

      4 from datetime import datetime

----> 5 import numpy

      6 

ipdb> quit

We can also profile our script by passing the -p option to %run.

In [4]: %run -p vectorsum.py 1000

         1058 function calls (1054 primitive calls) in 0.002 CPU seconds

   Ordered by: internal time

ncallstottimepercallcumtimepercallfilename:lineno(function)

1 0.001    0.001   0.001    0.001 vectorsum.py:28(pythonsum)

1 0.001    0.001   0.002    0.002 {execfile}

1000 0.000    0.0000.0000.000 {method 'append' of 'list' objects}

1 0.000    0.000    0.002    0.002 vectorsum.py:3(<module>)

1 0.000    0.0000.0000.000 vectorsum.py:21(numpysum)

3    0.000    0.0000.0000.000 {range}

1    0.000    0.0000.0000.000 arrayprint.py:175(_array2string)

3/1    0.000    0.0000.0000.000 arrayprint.py:246(array2string)

2    0.000    0.0000.0000.000 {method 'reduce' of 'numpy.ufunc' objects}

4    0.000    0.0000.0000.000 {built-in method now}

2    0.000    0.0000.0000.000 arrayprint.py:486(_formatInteger)

2    0.000    0.0000.0000.000 {numpy.core.multiarray.arange}

1    0.000    0.0000.0000.000 arrayprint.py:320(_formatArray)

3/1    0.000    0.0000.0000.000 numeric.py:1390(array_str)

1    0.000    0.0000.0000.000 numeric.py:216(asarray)

2    0.000    0.0000.0000.000 arrayprint.py:312(_extendLine)

1    0.000    0.0000.0000.000 fromnumeric.py:1043(ravel)

2    0.000    0.0000.0000.000 arrayprint.py:208(<lambda>)

1    0.000    0.000    0.002    0.002<string>:1(<module>)

11    0.000    0.0000.0000.000 {len}

2    0.000    0.0000.0000.000 {isinstance}

1    0.000    0.0000.0000.000 {reduce}
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1    0.000    0.0000.0000.000 {method 'ravel' of 'numpy.ndarray' objects}

4    0.000    0.0000.0000.000 {method 'rstrip' of 'str' objects}

3    0.000    0.0000.0000.000 {issubclass}

2    0.000    0.0000.0000.000 {method 'item' of 'numpy.ndarray' objects}

1    0.000    0.0000.0000.000 {max}

1    0.000    0.0000.0000.000 {method 'disable' of '_lsprof.Profiler' 
objects}

This gives us a bit more insight in the workings of our program. In addition, we can now 
identify performance bottlenecks. The %hist command shows the commands history.

In [2]: a=2+2

In [3]: a

Out[3]: 4

In [4]: %hist

1: _ip.magic("hist ")

2: a=2+2

3: a

I hope you agree that IPython is a really useful tool!

Online resources and help
When we are in IPython's pylab mode, we can open manual pages for NumPy functions with 
the help command. It is not necessary to know the name of a function. We can type a few 
characters and then let tab completion do its work. Let's, for instance, browse the available 
information for the arange function.

In [2]: help ar<Tab>

arangearccosarccosharcsinarcsinh

arctan arctan2 arctanhargmaxargmin

argsortargwhere around array2string array_equal

array_equivarray_reprarray_splitarray_str arrow

array

In [2]: help arange

Another option is to put a question mark behind the function name.

In [3]: arange?
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The main documentation website for NumPy and SciPy is at http://docs.scipy.org/
doc/. Through this webpage, we can browse the NumPy reference at http://docs.
scipy.org/doc/numpy/reference/ and the user guide as well as several tutorials.

NumPy has a wiki with lots of documentation at http://docs.scipy.org/numpy/
Front%20Page/.

The NumPy and SciPy forum can be found at http://ask.scipy.org/en.

The popular Stack Overflow software development forum has hundreds of questions 
tagged "numpy". To view them, go to http://stackoverflow.com/questions/
tagged/numpy.

If you are really stuck with a problem or you want to be kept informed of NumPy 
development, you can subscribe to the NumPy discussion mailing list. The e-mail address  
is numpy-discussion@scipy.org. The number of e-mails per day is not too high and there 
is almost no spam to speak of. Most importantly, developers actively involved with NumPy 
also answer questions asked on the discussion group. The complete list can be found at 
http://www.scipy.org/Mailing_Lists.

For IRC users, there is an IRC channel on irc.freenode.net. The channel is called #scipy, 
but you can also ask NumPy questions since SciPy users also have knowledge of NumPy, as 
SciPy is based on NumPy. There are at least 50 members on the scipy channel at all times.

Summary
In this chapter, we installed NumPy. We got a vector addition program working and 
convinced ourselves that NumPy has superior performance. We were introduced to the 
IPython interactive shell. In addition, we explored the available NumPy documentation  
and online resources.

In the next chapter, we will take a look under the hood and explore some fundamental 
concepts including arrays and data types.

                 

       



2
Beginning with NumPy Fundamentals

After installing NumPy and getting some code to work, it's time to cover  
NumPy basics.

The topics we shall cover in this chapter are:

 � Data types

 � Array types

 � Type conversions

 � Array creation

 � Indexing

 � Slicing

 � Shape manipulation

Before we start, let me make a few remarks about the code examples in this chapter. 
The code snippets in this chapter show input and output from several IPython sessions. 
Recall that IPython was introduced in the previous chapter as the interactive Python shell 
of choice for scientific computing. The advantages of IPython are pylab switch of many 
scientific computing Python packages, including NumPy, and the fact that it is not necessary 
to explicitly call the print function to display variable values. However, the source code 
delivered alongside the book is regular Python code that uses imports and print statements.
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NumPy array object
NumPy has a multi-dimensional array object called ndarray.It consists of two parts:

1. The actual data

2. Some metadata describing the data

The majority of array operations leave the raw data untouched. The only aspect that changes 
is the metadata.

We have already learned, in the previous chapter, how to create an array using the arange 
function. Actually, we created a one-dimensional array that contained a set of numbers. 
ndarray can have more than one dimension.

The NumPy array is homogeneous—the items in the array have to be of the same type. The 
advantage is that, if we know that the items in the array are of the same type, then it is easy 
to determine the storage size required for the array.

NumPy arrays are indexed just like in Python, starting from 0. Data types are represented by 
special objects. These objects will be discussed comprehensively in this chapter.

We will create an array with the arange function again. Here's how to get the data type of 
an array:

In: a = arange(5)
In: a.dtype
Out: dtype('int64')

The data type of array a is int64 (at least on my machine), but you may get int32 as 
output if you are using 32-bit Python. In both cases, we are dealing with integers (64-bit or 
32-bit). Besides the data type of an array, it is important to know its shape. The following 
diagram will give us a better understanding of a NumPy array object:

ndarray

Dtype

Shape

The example in Chapter 1, NumPy Quick Start, demonstrated how to create a vector 
(actually, a one-dimensional NumPy array). A vector is commonly used in mathematics but, 
most of the time, we need higher-dimensional objects. Let's determine the shape of the 
vector we created a few minutes ago:

In [4]: a
Out[4]: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)
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As you can see, the vector has five elements with values ranging from 0 to 4. The shape 
attribute of the array is a tuple, in this case a tuple of 1 element, which contains the length in 
each dimension.

Time for action – creating a multidimensional array
Now that we know how to create a vector, we are ready to create a multidimensional NumPy 
array. After we create the matrix, we would again want to display its shape and data type.

1. Create a multidimensional array.

2. Show the array shape and data type:

In: m = array([arange(2), arange(2)])
In: m
Out:
array([[0, 1],
       [0, 1]])
In: m.shape
Out: (2, 2)

What just happened?
We created a 2-by-2 array with the arange function we have come to trust and love. 
Without any warning, the array function appeared on the stage.

The array function creates an array from an object that you give to it. The object needs 
to be array-like, for instance, a Python list. In the preceding example, we passed in a list of 
arrays. The object is the only required argument of the array function. NumPy functions 
tend to have a lot of optional arguments with predefined defaults.

Pop quiz – the shape of ndarray
1. How is the shape of an ndarray stored?

a. It is stored in a comma-separated string.

b. It is stored in a list.

c. It is stored in a tuple.
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Have a go hero – create a 3-by-3 matrix
It shouldn't be too hard now to create a 3-by-3 matrix. Give it a go and check whether the 
array shape is as expected.

Selecting elements
From time to time, we will want to select a particular element of an array. We will take a look 
at how to do this, but first, let's create a 2-by-2 matrix again:

In: a = array([[1,2],[3,4]])
In: a
Out:
array([[1, 2],
       [3, 4]])

The matrix was created this time by passing the array function a list of lists. We will now 
select each item of the matrix one-by-one. Remember, the indices are numbered starting 
from 0.

In: a[0,0]
Out: 1
In: a[0,1]
Out: 2
In: a[1,0]
Out: 3
In: a[1,1]
Out: 4

As you can see, selecting elements of the array is pretty simple. For the array a, we just use 
the notation a[m,n] , where m and n are the indices of the item in the array.

[0,0] [0,1]

[1,0] [1,1]

NumPy numerical types
Python has an integer type, a float type, and a complex type, however, this is not enough for 
scientific computing and, for this reason, NumPy has a lot more data types. In practice, we 
need even more types with varying precision and, therefore, different memory size of the 
type. The majority of the NumPy numerical types end with a number. This number indicates 
the number of bits associated with the type. The following table (adapted from the NumPy 
user guide) gives an overview of NumPy numerical types:
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Type Description

bool Boolean (True or False) stored as a bit

inti Platform integer (normally either int32 or int64)

int8 Byte (-128 to 127)

int16 Integer (-32768 to 32767)

int32 Integer (-2 ** 31 to 2 ** 31 -1)

int64 Integer (-2 ** 63 to 2 ** 63 -1)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 2 ** 32 - 1)

uint64 Unsigned integer (0 to 2 ** 64 - 1)

float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

float64 or float Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

complex64 Complex number, represented by two 32-bit floats (real and 
imaginary components)

complex128 or 
complex

Complex number, represented by two 64-bit floats (real and 
imaginary components)

For each data type, there exists a corresponding conversion function:

In: float64(42)
Out: 42.0
In: int8(42.0)
Out: 42
In: bool(42)
Out: True
In: bool(42.0)
Out: True
In: float(True)
Out: 1.0

Many functions have a data type argument, which is often optional:

In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
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It is important to know that you are not allowed to convert a complex number into an 
integer. Trying to do that triggers a TypeError. This is shown as follows:

In: int(42.0 + 1.j)
---------------------------------------------------------------------
---
TypeError                                 Traceback (most recent call 
last)
TypeError: can't convert complex to int; use int(abs(z))

The same goes for conversion of a complex number into a float. By the way, the .j part is 
the imaginary coefficient of the complex number. See the following code:

In: float(42.0 + 1.j)
---------------------------------------------------------------------
---
TypeError                                 Traceback (most recent call 
last)
TypeError: can't convert complex to float; use abs(z)

Data type objects
Data type objects are instances of the numpy.dtype class. Once again, arrays have a data 
type. To be precise, every element in a NumPy array has the same data type. The data type 
object can tell you the size of the data in bytes. The size in bytes is given by the itemsize 
attribute of the dtype class:

In: a.dtype.itemsize
Out: 8

The following diagram gives us a better understanding of data type objects:

dtype

itemsize

byteorder

Character codes
Character codes are included for backward compatibility with Numeric. Numeric is the 
predecessor of NumPy. Their use is not recommended, but the codes are provided here 
because they pop up in several places. You should instead use dtype objects.
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Type Character 
code

integer i

Unsigned integer u

Single precision float f

Double precision float d

bool b

complex D

string S

unicode U

Void V

Look at the following code to create an array of single precision floats:

In: arange(7, dtype='f')
Out: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.], dtype=float32)
Likewise this creates an array of complex numbers
In: arange(7, dtype='D')
Out: array([ 0.+0.j,  1.+0.j,  2.+0.j,  3.+0.j,  4.+0.j,  5.+0.j,  
6.+0.j])

dtype constructors
We have a variety of ways to create data types. Take the case of floating point data:

 � We can use the general Python float:

In: dtype(float)
Out: dtype('float64')

 � We can specify a single precision float with a character code:

In: dtype('f')
Out: dtype('float32')

 � We can use a double precision float character code:

In: dtype('d')
Out: dtype('float64')

 � We can give the data type constructor a two-character code. The first character 
signifies the type; the second character is a number specifying the number of  
bytes in the type:

In: dtype('f8')
Out: dtype('float64')
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A listing of all full data type names can be found in sctypeDict.keys():

In: dtype('Float64')
Out: dtype('float64')

dtype attributes
The dtype class has a number of useful attributes. For example, we can get information 
about the character code of a data type through the attributes of dtype:

In: t = dtype('Float64')
In: t.char
Out: 'd'

The type attribute corresponds to the type of object of the array elements:

In: t.type
Out: <type 'numpy.float64'>

The str attribute of dtype gives a string representation of the data type. It starts with a 
character representing endianness, if appropriate, then a character code, followed by a 
number corresponding to the number of bytes that each array item requires. Endianness, 
here, means the way bytes are ordered within a 32 or 64-bit word. In big-endian order, the 
most significant byte is stored first. In little-endian order, the least significant byte is stored 
first.

In: t.str
Out: '<f8'

dtype

str

type

char

Time for action – creating a record data type
The record data type is a heterogeneous data type—think of it as representing a row in a 
spreadsheet or a database. To give an example of a record data type, we will create a record 
for a shop inventory. The record contains the name of the item, a 40-character string, the 
number of items in the store represented by a 32-bit integer and, finally, a price represented 
by a 32-bit float. The following steps show how to create a record data type:

                 

       



Chapter 2

[ 33 ]

1. Create the record: 

In: t = dtype([('name', str_, 40), ('numitems', int32), ('price', 
float32)])
In: t
Out: dtype([('name', '|S40'), ('numitems', '<i4'), ('price', 
'<f4')])

2. View the type (we can view the type of a field as well): 

In: t['name']
Out: dtype('|S40')

If you don't give the array function a data type, it will assume that it is dealing with floating 
point numbers. To create the array now, we really have to specify the data type; otherwise, 
we will get a TypeError:

In: itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13, 
2.72)], dtype=t)
In: itemz[1]
Out: ('Butter', 13, 2.7200000286102295)

What just happened?
We created a record data type, which is a heterogeneous data type. The record contained a 
name as a character string, a number as an integer and a price represented by a float.

One-dimensional slicing and indexing
Slicing of one-dimensional NumPy arrays works just like slicing of Python lists. We can select 
a piece of an array from index 3 to 7 that extracts the elements 3 through 6:

In: a = arange(9)
In: a[3:7]
Out: array([3, 4, 5, 6])

We can select elements from index 0 to 7 with a step of 2:

In: a[:7:2]
Out: array([0, 2, 4, 6])

Similarly as in Python, we can use negative indices and reverse the array:

In: a[::-1]
Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])
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Time for action – slicing and indexing multidimensional arrays
An ndarray supports slicing over multiple dimensions. For convenience, we refer to many 
dimensions at once, with an ellipsis.

1. Create an array and reshape it: To illustrate, we will create an array with the 
arange function and reshape it:

In: b = arange(24).reshape(2,3,4)
In: b.shape
Out: (2, 3, 4)
In: b
Out:
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

The array b has 24 elements with values 0 to 23 and we reshaped it to be a 2-by-
3-by-4, three-dimensional array. We can visualize this as a two-story building with 
12 rooms on each floor, 3 rows and 4 columns. As you have probably guessed, the 
reshape function changes the shape of an array. You give it a tuple of integers, 
corresponding to the new shape. If the dimensions are not compatible with the 
data, an exception is thrown.

2. Selecting a single cell: We can select a single room by using its three coordinates, 
namely, the floor, column, and row. For example, the room on the first floor, in the 
first row, and in the first column (you can have floor 0 and room 0—it's just a matter 
of convention) can be represented by:

In: b[0,0,0]
Out: 0

3. Selecting slices: If we don't care about the floor, but still want the first column and 
row, we replace the first index by a : (colon) because we just need to specify the 
floor number and omit the other indices:

In: b[:,0,0]
Out: array([ 0, 12])
This selects the first floor
In: b[0]
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

                 

       



Chapter 2

[ 35 ]

We could also have written:

In: b[0, :, :]
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

An ellipsis replaces multiple colons, so, the preceding code is equivalent to:

In: b[0, ...]
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

Further, we get the second row on the first floor with:

In: b[0,1]
Out: array([4, 5, 6, 7])

4. Using steps to slice: Furthermore, we can also select each second element of this 
selection:

In: b[0,1,::2]
Out: array([4, 6])

5. Using ellipsis to slice: If we want to select all the rooms on both floors that are in 
the second column, regardless of the row, we will type the following code snippet:

In: b[...,1]
Out:
array([[ 1,  5,  9],
       [13, 17, 21]])

Similarly, we can select all the rooms on the second row, regardless of floor and 
column, by writing the following code snippet:

In: b[:,1]
Out:
array([[ 4,  5,  6,  7],
       [16, 17, 18, 19]])

If we want to select rooms on the ground floor second column, then type the 
following code snippet:

In: b[0,:,1]
Out: array([1, 5, 9])
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6. Using negative indices: If we want to select the first floor, last column, then type the 
following code snippet:

In: b[0,:,-1]
Out: array([ 3,  7, 11])

If we want to select rooms on the ground floor, last column reversed, then type the 
following code snippet:

In: b[0,::-1, -1]
Out: array([11,  7,  3])

Every second element of that slice:

In: b[0,::2,-1]
Out: array([ 3, 11])

The command that reverses a one-dimensional array puts the top floor following the 
ground floor:

In: b[::-1]
Out:
array([[[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]],
       [[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]]])

What just happened?
We sliced a multidimensional NumPy array using several different methods.

Time for action – manipulating array shapes
We already learned about the reshape function. Another recurring task is flattening 
of arrays.

1. Ravel: We can accomplish this with the ravel function:

In: b
Out:
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
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In: b.ravel()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 
15, 16,
       17, 18, 19, 20, 21, 22, 23])

2. Flatten: The appropriately-named function, flatten, does the same as ravel, but 
flatten always allocates new memory whereas ravel might return a view of 
the array.

In: b.flatten()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 
15, 16,
       17, 18, 19, 20, 21, 22, 23])

3. Setting the shape with a tuple: Besides the reshape function, we can also set the 
shape directly with a tuple, which is shown as follows:

In: b.shape = (6,4)
In: b
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23]])

As you can see, this changes the array directly. Now, we have a 6-by-4 array.

4. Transpose: In linear algebra, it is common to transpose matrices. We can do that 
too, by using the following code:

In: b.transpose()
Out:
array([[ 0,  4,  8, 12, 16, 20],
       [ 1,  5,  9, 13, 17, 21],
       [ 2,  6, 10, 14, 18, 22],
       [ 3,  7, 11, 15, 19, 23]])

5. Resize: The resize melthod works just like the reshape method, but modifies the 
array it operates on:

In: b.resize((2,12))
In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
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What just happened?
We manipulated the shapes of NumPy arrays using the ravel function, function flatten, 
the reshape function, and the resize method.

Stacking
Arrays can be stacked horizontally, depth-wise, or vertically. We can use, for that purpose, 
the vstack, dstack, hstack, column_stack, row_stack, and concatenate functions.

Time for action – stacking arrays
First, let's set up some arrays:

In: a = arange(9).reshape(3,3)
In: a
Out:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])

1. Horizontal stacking: Starting with horizontal stacking, we will form a tuple of 
ndarrays and give it to the hstack function. This is shown as follows:

In: hstack((a, b))
Out:
array([[ 0,  1,  2,  0,  2,  4],
       [ 3,  4,  5,  6,  8, 10],
       [ 6,  7,  8, 12, 14, 16]])

We can achieve the same with the concatenate function, which is shown 
as follows:

In: concatenate((a, b), axis=1)
Out:
array([[ 0,  1,  2,  0,  2,  4],
       [ 3,  4,  5,  6,  8, 10],
       [ 6,  7,  8, 12, 14, 16]])
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A

B

Hstack
Or

Concatenate
axis=1

A B

2. Vertical stacking: With vertical stacking, again, a tuple is formed. This time, it is 
given to the vstack function. This can be seen as follows:

In: vstack((a, b))
Out:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])

The concatenate function produces the same result with the axis set to 0. This is 
the default value for the axis argument.

In: concatenate((a, b), axis=0)
Out:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])

A

B

Vstack
Or

Concatenate
axis=0

A B

3. Depth stacking: Additionally, there is the depth-wise stacking using dstack and a 
tuple, of course. This means stacking of a list of arrays along the third axis (depth). 
For instance, we could stack 2D arrays of image data on top of each other.

In: dstack((a, b))
Out:
array([[[ 0,  0],
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        [ 1,  2],
        [ 2,  4]],
       [[ 3,  6],
        [ 4,  8],
        [ 5, 10]],
       [[ 6, 12],
        [ 7, 14],
        [ 8, 16]]])

4. Column stacking: The column_stack function stacks 1D arrays column-wise. It's 
shown as follows:

In: oned = arange(2)
In: oned
Out: array([0, 1])
In: twiceoned = 2 * oned
In: twiceoned
Out: array([0, 2])
In: column_stack((oned, twiceoned))
Out:
array([[0, 0],
       [1, 2]])

2D arrays are stacked the way hstack stacks them:

In: column_stack((a, b))
Out:
array([[ 0,  1,  2,  0,  2,  4],
       [ 3,  4,  5,  6,  8, 10],
       [ 6,  7,  8, 12, 14, 16]])
In: column_stack((a, b)) == hstack((a, b))
Out:
array([[ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True],
       [ True,  True,  True,  True,  True,  True]], dtype=bool)

Yes, you guessed it right! We compared two arrays with the == operator. Isn't 
it beautiful?

5. Row stacking: NumPy, of course, also has a function that does row-wise stacking. 
It is called row_stack and, for 1D arrays, it just stacks the arrays in rows into 
a 2D array.

In: row_stack((oned, twiceoned))
Out:
array([[0, 1],
       [0, 2]])
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The row_stack function results for 2D arrays are equal to. Yes, exactly the vstack 
function results.

In: row_stack((a, b))
Out:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 0,  2,  4],
       [ 6,  8, 10],
       [12, 14, 16]])
In: row_stack((a,b)) == vstack((a, b))
Out:
array([[ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True]], dtype=bool)

What just happened?
We stacked arrays horizontally, depth-wise, or vertically. We used the vstack, dstack, 
hstack, column_stack, row_stack, and concatenate functions.

Splitting
Arrays can be split vertically, horizontally, or depth wise. The functions involved are hsplit, 
vsplit, dsplit, and split. We can either split into arrays of the same shape or indicate 
the position after which the split should occur.

Time for action – splitting arrays
1. Horizontal splitting: The ensuing code splits an array along its horizontal axis into 

three pieces of the same size and shape. This is shown as follows:

In: a
Out:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
In: hsplit(a, 3)
Out:
[array([[0],
       [3],
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       [6]]),
 array([[1],
       [4],
       [7]]),
 array([[2],
       [5],
       [8]])]

Compare it with a call of the split function, with extra parameter axis=1:

In: split(a, 3, axis=1)
Out:
[array([[0],
       [3],
       [6]]),
 array([[1],
       [4],
       [7]]),
 array([[2],
       [5],
       [8]])]

2. Vertical splitting: vsplit splits along the vertical axis:

In: vsplit(a, 3)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

The split function, with axis=0, also splits along the vertical axis:

In: split(a, 3, axis=0)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

3. Depth-wise splitting: The dsplit function, unsurprisingly, splits depth-wise. We 
will need an array of rank 3 first:

In: c = arange(27).reshape(3, 3, 3)
In: c
Out:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],
       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],
       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
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In: dsplit(c, 3)
Out:
[array([[[ 0],
        [ 3],
        [ 6]],
       [[ 9],
        [12],
        [15]],
       [[18],
        [21],
        [24]]]),
 array([[[ 1],
        [ 4],
        [ 7]],
       [[10],
        [13],
        [16]],
       [[19],
        [22],
        [25]]]),
 array([[[ 2],
        [ 5],
        [ 8]],
       [[11],
        [14],
        [17]],
       [[20],
        [23],
        [26]]])]

What just happened?
We split arrays using the hsplit, vsplit, dsplit, and split functions.

Array attributes
Besides the shape and dtype attributes, ndarray has a number of other attributes, as 
shown in the following list:

 � ndim gives the number of dimensions:

In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
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       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
In: b.ndim
Out: 2

 � size contains the number of elements. This is shown a follows:

In: b.size
Out: 24

 � itemsize gives the number of bytes for each element in the array:

In: b.itemsize

Out: 8

 � If you want the total number of bytes the array requires, you can have a look at 
nbytes. This is just a product of the itemsize and size attributes:

In: b.nbytes
Out: 192
In: b.size * b.itemsize
Out: 192

 � The T attribute has the same effect as the transpose function, which is shown 
as follows:

In: b.resize(6,4)
In: b
Out:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23]])
In: b.T
Out:
array([[ 0,  4,  8, 12, 16, 20],
       [ 1,  5,  9, 13, 17, 21],
       [ 2,  6, 10, 14, 18, 22],
       [ 3,  7, 11, 15, 19, 23]])

 � If the array has a rank lower than 2, we will just get a view of the array:

In: b.ndim
Out: 1
In: b.T
Out: array([0, 1, 2, 3, 4])
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Complex numbers in NumPy are represented by .j. For example, we can create an array 
with complex numbers:

In: b = array([1.j + 1, 2.j + 3])
In: b
Out: array([ 1.+1.j,  3.+2.j])

 � The real attribute gives us the real part of the array, or the array itself if it only 
contains real numbers:

In: b.real
Out: array([ 1.,  3.])

 � The imag attribute contains the imaginary part of the array:

In: b.imag
Out: array([ 1.,  2.])

 � If the array contains complex numbers, then the data type is automatically  
also complex:

In: b.dtype
Out: dtype('complex128')
In: b.dtype.str
Out: '<c16'

 � The flat attribute returns a numpy.flatiter object. This is the only way to 
acquire a flatiter—we do not have access to a flatiter constructor. The flat 
iterator enables us to loop through an array as if it is a flat array, as shown next:

In: b = arange(4).reshape(2,2)
In: b
Out:
array([[0, 1],
       [2, 3]])
In: f = b.flat
In: f
Out: <numpy.flatiter object at 0x103013e00>
In: for item in f: print item
   .....:
0
1
2
3

It is possible to directly get an element with the flatiter object:

In: b.flat[2]
Out: 2
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or multiple elements:

In: b.flat[[1,3]]
Out: array([1, 3])

The flat attribute is settable. Setting the value of the flat attribute leads to 
overwriting the values of the whole array:

In: b.flat = 7
In: b
Out:
array([[7, 7],
       [7, 7]])
or selected elements
In: b.flat[[1,3]] = 1
In: b
Out:
array([[7, 1],
       [7, 1]])

ndarray

real

size

ndim

imag

flat

T

nbytesitemsize

Time for action – converting arrays
We can convert a NumPy array to a Python list with the tolist function. This is shown 
as follows:

1. Convert to a list: 

In: b
Out: array([ 1.+1.j,  3.+2.j])
In: b.tolist()
Out: [(1+1j), (3+2j)]

2. astype function: The astype function converts the array to an array of the 
specified type:

In: b
Out: array([ 1.+1.j,  3.+2.j])
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In: b.astype(int)
/usr/local/bin/ipython:1: ComplexWarning: Casting complex values 
to real discards the imaginary part
  #!/usr/bin/python
Out: array([1, 3])

We are losing the imaginary part when casting from 
complex type to int. The astype function also accepts 
the name of a type as a string.

In: b.astype('complex')
Out: array([ 1.+1.j,  3.+2.j])

It won't show any warning this time, because we used the proper data type.

What just happened?
We converted NumPy arrays to a list and to arrays of different data types.

Summary
We learned a lot in this chapter about the NumPy fundamentals: data types and arrays. 
Arrays have several attributes describing them. We learned that one of these attributes  
is the data type, which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an efficient manner, just like Python lists. NumPy 
arrays have the added ability of working with multiple dimensions.

The shape of an array can be manipulated in many ways—stacking, resizing, reshaping, 
and splitting. A great number of convenience functions for shape manipulation were 
demonstrated in this chapter.

Having learned about the basics, it's time to move on to the study of commonly-used 
functions in Chapter 3, Get to terms with commonly used functions. This includes basic 
statistical and mathematical functions.

                 

       



                 

       



3
Get into Terms with Commonly  

Used Functions

In this chapter, we will have a look at common NumPy functions. In particular, 
we will learn how to load data from files using a historical stock prices example. 
Also, we will get to see the basic NumPy mathematical and statistical functions.

We will learn how to read from, and write to, files. Also, we will get a taste of 
the functional programming and linear algebra possibilities in NumPy.

In this chapter, we shall cover the following topics:

 � Functions working on arrays

 � Loading arrays from files

 � Writing arrays to files

 � Simple mathematical and statistical functions

File I/O
First, we will learn about file I/O with NumPy. Data is usually stored in files. You would not 
get far if you are not able to read from and write to files.
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Time for action – reading and writing files
As an example of file I/O, we will create an identity matrix and store its contents in a file.

Identity matrix creation
1. Creating an identity matrix: The identty matrix is a square matrix with ones on the 

diagonal and zeroes for the rest.

� �

� �[ [
The identity matrix can be created with the eye function. The only argument we 
need to give the eye function is the number of ones. So, for instance, for a 2-by-2 
matrix, write the following code:

i2 = numpy.eye(2)
print i2

The output is:

[[ 1.  0.]
[ 0.  1.]]

2. Saving data: Save the data with the savetxt function. We obviously need to specify 
the name of the file that we want to save the data in and the array containing the 
data itself:

numpy.savetxt("("eye.txt", i2)

A file called eye.txt should have been created. You can check for yourself whether the 
contents are as expected.

What just happened?
Reading and writing files is a necessary skill for data analysis. We wrote to a file with 
savetxt. We made an identity matrix with the eye function.

CSV files
Files in the comma separated values (CSV) format are encountered quite frequently. Often, 
the CSV file is just a dump from a database file. Usually, each field in the CSV file corresponds 
to a database table column. As we all know, spreadsheet programs, such as Excel, can 
produce CSV files as well.
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Time for action – loading from CSV files
How do we deal with CSV files? Luckily, the loadtxt function can conveniently read CSV 
files, split up the fields and load the data into NumPy arrays. In the following example, 
we will load historical price data for Apple (the company, not the fruit). The data is in CSV 
format. The first column contains a symbol that identifies the stock. In our case, it is AAPL, 
next in our case. Nn is the date in dd-mm-yyyy format. The third column is empty. Then, in 
order, we have the open, high, low, and close price. Last, but not least, is the volume of the 
day. This is what a line looks like:

AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

 � Loading data: For now, we are only interested in the close price and volume. In the 
preceding sample, that would be 336.1 and 21144800. Store the close price and 
volume in two arrays as follows:

c,v=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,7), 
unpack=True)))

As you can see, data is stored in the data.csv file. We have set the delimiter to , (comma), 
since we are dealing with a comma separated value file. The usecols parameter is set 
through a tuple to get the seventh and eighth fields, which correspond to the close price and 
volume. Unpack is set to True, which means that data will be unpacked and assigned to the 
c and v variables that will hold the close price and volume, respectively.

What just happened?
CSV files are a special type of file that we have to deal with frequently. We read a CSV file 
containing stock quotes with the loadtxt function. We indicated to the loadtxt function 
that the delimiter of our file was a comma. We specified which columns we were interested 
in, through the usecols argument, and set the unpack parameter to True so that the data 
was unpacked for further use.

Volume weighted average price
Volume weighted average price (VWAP) is a very important quantity. The higher the volume, 
the more significant a price move typically is. VWAP is calculated by using volume values as 
weights.
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Time for action – calculating volume weighted average price
These are the actions that we will take:

1.	 Read the data into arrays.

2.	 Calculate VWAP:

import numpy
c,v=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,7), 
unpack=True)
vwap = numpy.average(c, weights=v)
print "VWAP =", vwap
The output is
VWAP = 350.589549353

What just happened?
That wasn't very hard, was it? We just called the average function and set its weights 
parameter to use the v array for weights. By the way, NumPy also has a function to 
calculate the arithmetic mean.

The mean function
The mean function is quite friendly and not so mean. This function calculates the arithmetic 
mean of an array. Let's see it in action:

print "mean =", numpy.mean(c)
mean =  351.037666667

Time weighted average price
Now that we are at it, let's compute the time weighted average price too. It is just a variation 
on a theme really. The idea is that recent price quotes are more important, so we should give 
recent prices higher weights. The easiest way is to create an array with the arange function 
of increasing values from zero to the number of elements in the close price array. This is not 
necessarily the correct way. In fact, most of the examples concerning stock price analysis in 
this book are only illustrative. The following is the TWAP code:

t = numpy.arange(len(c))
print "twap =", numpy.average(c, weights=t)

It produces this output:

twap = 352.428321839

The TWAP is even higher than the mean.
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Pop quiz – computing the weighted average
1. Which function returns the weighted average of an array?

a. weighted average

b. waverage

c. average

d. avg

Have a go hero – calculating other averages
Try doing the same calculation using the open price. Calculate the mean for the volume and 
the other prices.

Value range
Usually, we don't only want to know the average or arithmetic mean of a set of values, which 
are sort of in the middle; we also want the extremes, the full range—the highest and lowest 
values. The sample data that we are using here already has those values per day—the high 
and low price. However, we need to know the highest value of the high price and the lowest 
price value of the low price. After all, how else would we know how much our Apple stocks 
would gain or lose.

Time for action – finding highest and lowest values
The min and max functions are the answer to our requirement.

1.	 Reading from a file: First, we will need to read our file again and store the values for 
the high and low prices into arrays:
h,l=numpy.loadtxt('data.csv', delimiter=',', usecols=(4,5), 
unpack=True)

The only thing that changed is the usecols parameter, since the high and low 
prices are situated in different columns.

2.	 Getting the range: The following code gets the price range:

print "highest =", numpy.max(h)))
print "lowest =", numpy.min(l)

These are the values returned:
highest = 364.9

lowest = 333.53

Now, it's trivial to get a midpoint, so it is left as an exercise for the reader to attempt. 
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3.	 Calculating the spread: NumPy allows us to compute the spread of an array with 
a function called The ptp function returns the difference between the maximum 
and minimum values of an array. In other words, it is equal to max(array) – 
min(array). Call the ptp function:

print "Spread high price", numpy.ptp(h)
print "Spread low price", numpy.ptp(l)

You will see this:

Spread high price 24.86
Spread low price 26.97

What just happened?
We defined a range of highest to lowest values for the price. The highest value was given by 
applying the max function to the high price array. Similarly, the lowest value was found by 
calling the min function to the low price array. We also calculated the peak to peak distance 
with the ptp function.

Statistics
Stock traders are interested in the most probable close price. Common sense says that this 
should be close to some kind of an average. The arithmetic mean and weighted average 
are ways to find the center of a distribution of values. However, both are not robust and 
sensitive to outliers. For instance, if we had a close price value of a million dollars, this  
would have influenced the outcome of our calculations.

Time for action – doing simple statistics
One thing that we can do is use some kind of threshold to weed out outliers, but there is a 
better way. It is called the median, and it basically picks the middle value of a sorted set of 
values. For example, if we have the values of 1, 2, 3, 4 and 5. The median would be 3, since  
it is in the middle. These are the steps to calculate the median:

1. Determine the median of the close price: Create a new Python script and call it 
simplestats.py. You already know how to load the data from a CSV file into an 
array. So, copy that line of code and make sure that it only gets the close price. The 
code should appear like this, by now:

c=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,), 
unpack=True)
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The function that will do the magic for us is called median. We will call it and print 
the result immediately. Add the following line of code:

print "median =", numpy.median(c)

The program prints the following output:

median = 352.055

Since it is our first time using the median function, we would like to check whether 
this is correct. Not because we are paranoid or anything! Obviously, we could do 
it by just going through the file and finding the correct value, but that is no fun. 
Instead we will just mimic the median algorithm by sorting the close price array and 
printing the middle value of the sorted array. The msort function does the first part 
for us. We will call the function, store the sorted array, and then print it:

sorted_close = numpy.msort(c)
print "sorted =", sorted_close

This prints the following output:

sorted = [ 336.1   338.61  339.32  342.62  342.88  343.44  344.32  
345.03  346.5
  346.67  348.16  349.31  350.56  351.88  351.99  352.12  352.47  
353.21
  354.54  355.2   355.36  355.76  356.85  358.16  358.3   359.18  
359.56
  359.9   360.    363.13]

Yup, it works! Let's now get the middle value of the sorted array:

N = len(c)
print "middle =", sorted[(N - 1)/2]

It gives us the following output:

middle = 351.99

Hey, that's a different value than the one the median function gave us. How come? 
Upon further investigation we find that the median function return value doesn't 
even appear in our file. That's even stranger! Before filing bugs with the NumPy 
team, let's have a look at the documentation. This mystery is easy to solve. It turns 
out that our naive algorithm only works for arrays with odd lengths. For even-length 
arrays, the median is calculated from the average of the two array values in the 
middle. Therefore, type the following code:

print "average middle =", (sorted[N /2] + sorted[(N - 1) / 2]) / 2

This prints the following output:

average middle = 352.055

Success!
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Another statistical measure that we are concerned with is variance. Variance tells us 
how much a variable varies. In our case, it also tells us how risky an investment is, 
since a stock price that varies too wildly is bound to get us into trouble.

2. Calculate the variance of the close price: With NumPy, this is just a one liner. See 
the following code:

print "variance =", numpy.var(c)

This gives us the following output:

variance = 50.1265178889

Not that we don't trust NumPy or anything, but let's double-check using the 
definition of variance, as found in the documentation. Mind you, this definition 
might be different than the one in your statistics book, but that is quite common in 
the field of statistics. The variance is defined as the mean of the square of deviations 
from the mean, divided by the number of elements in the array. Some books tell us 
to divide by the number of elements in the array minus one.

print "variance from definition =", numpy.mean((c - c.mean())**2)

The output is as follows:

variance from definition = 50.1265178889

Just as we expected!

What just happened?
Maybe you noticed something new. We suddenly called the mean function on the c 
array. Yes, this is legal, because the ndarray object has a mean method. This is for your 
convenience. For now, just keep in mind that this is possible.

Stock returns
In academic literature it is more common to base analysis on stock returns and log returns 
of the close price. Simple returns are just the rate of change from one value to the next. 
Logarithmic returns or log returns are determined by taking the log of all the prices and 
calculating the differences between them. In high school, we learned that the difference 
between the log of "a" and the log of "b" is equal to the log of "a divided by b". Log return, 
therefore, also measures rate of change. Returns are dimensionless, since, in the act of 
dividing, we divide dollar by dollar (or some other currency). Anyway, investors are most likely 
to be interested in the variance or standard deviation of the returns, as this represents risk.
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Time for action – analyzing stock returns
Follow the ensuing steps to analyze stock returns:

1.	 Simple returns: First, let's calculate simple returns. NumPy has the diff function 
that returns an array built up of the difference between two consecutive array 
elements. This is sort of like differentiation in calculus. To get the returns, we also 
have to divide by the value of the previous day. We must be careful though. The 
array returned by diff is one element shorter than the close prices array. After 
careful deliberation, we get the following code:

returns = numpy.diff( arr ) / arr[ : -1]

Notice that we don't use the last value in the divisor. Let's compute the standard 
deviation using the std function:

print "Standard deviation =", numpy.std(returns)

This results in the following output:

Standard deviation = 0.0129221344368

2.	 Logarithmic returns: The log return is even easier to calculate. We use the log 
function to get the log of the close price and then unleash the diff function on the 
result. This is shown as follows:

logreturns = numpy.diff( numpy.log(c) )

Normally, we would have to check that the input array doesn't have zeroes or 
negative numbers. If it did we would have gotten an error. Stock prices are, however, 
always positive, so we didn't have to check.

3.	 Selecting positive returns: Quite likely, we will be interested in days when the return 
is positive. In the current setup, we can get the next best thing with the where 
function, which returns the indices of an array that satisfies a condition. Just type 
the following code:

posretindices = numpy.where(returns > 0)
print "Indices with positive returns", posretindices

This gives us a number of indices for the array elements that are positive:

Indices with positive returns (array([ 0,  1,  4,  5,  6,  7,  9, 
10, 11, 12, 16, 17, 18, 19, 21, 22, 23, 25, 28]),)
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4.	 Annualized and monthly volatilities: In investing, volatility measures price variation 
of a financial security. Historical volatility is calculated from historical price data. The 
logarithmic returns are interesting if you want to know the historical volatility—for 
instance, the annualized or monthly volatility. The annualized volatility is equal to 
the standard deviation of the log returns as a ratio of its mean, divided by one over 
the square root of the number of business days in a year, usually one assumes 252. 
Calculate it with the std and mean functions. See the following code:

annual_volatility = numpy.std(logreturns)/numpy.mean(logreturns)
annual_volatility = annual_volatility / numpy.sqrt(1./252.).)
print annual_volatility

Take notice of the division within the sqrt function. Since, in Python, integer 
division works differently than float division, we needed to use floats to make sure 
that we get the proper results. The monthly volatility is similarly given by:

print "Monthly volatility", annual_volatility * numpy.sqrt(1./12.)

What just happened?
We calculated the simple stock returns with the diff function, which calculates differences 
between sequential elements. The log function computes the natural logarithms of array 
elements. We used it to calculate the logarithmic returns. At the end of the tutorial we 
calculated the annual and monthly volatility.

Dates
Do you sometimes have the Monday blues or the Friday fever? Ever wondered whether 
the stock market suffers from said phenomena? Well, I think this certainly warrants  
extensive research.

Time for action – dealing with dates
First, we will read the close price data. Second, we will split the prices according to the day 
of the week. Third, for each weekday, we will calculate the average price. Finally, we will 
find out which day of the week has the highest average and which has the lowest average. A 
health warning before we commence: you might be tempted to use the result to buy stock 
on one day and sell on the other. However, we don't have enough data to make these kind  
of decisions. Please consult a professional statistician first!

Coders hate dates because they are so complicated! NumPy is very much oriented towards 
floating point operations. For that reason, we need to take extra effort to process dates. Try 
it out yourself; put the following code in a script or use the one that comes with the book:

dates, close=numpy.loadtxt('data.csv', delimiter=',',
  usecols=(1,6), unpack=True)
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Execute the script and the following error will appear:

ValueError: invalid literal for float(): 28-01-2011

1.	 Converter function: Obviously, NumPy tried to convert the dates into floats. 
What we have to do is explicitly tell NumPy how to convert the dates. The 
loadtxt function has a special parameter for this purpose. The parameter is 
called converters and is a dictionary that links columns with so-called converter 
functions. It is our responsibility to write the converter function.

Let's write the function down:

# Monday 0
# Tuesday 1
# Wednesday 2
# Thursday 3
# Friday 4
# Saturday 5
# Sunday 6
def datestr2num(s):
   return datetime.datetime.strptime(s, "%d-%m-%Y").date().
weekday()

We give the datestr2num function dates as a string, such as "28-01-2011". The 
string is first turned into a datetime object using a specified format "%d-%m-%Y". 
This is, by the way, standard Python and is not related to NumPy itself. Second, the 
datetime object is turned into a day. Finally the weekday method is called on the 
date to return a number. As you can read in the comments, the number is between 
0 and 6. 0 is for instance Monday and 6 is Sunday. The actual number, of course, is 
not important for our algorithm; it is only used as identification.

2.	 Load the data: Now we will hook up our date converter function:

dates, close=numpy.loadtxt('data.csv', delimiter=',', 
usecols=(1,6), converters={1: datestr2num}, unpack=True)
print "Dates =", dates

This prints the following output:

Dates = [ 4.  0.  1.  2.  3.  4.  0.  1.  2.  3.  4.  0.  1.  2.  
3.  4.  1.  2.  4.  0.  1.  2.  3.  4.  0.  1.  2.  3.  4.]

No Saturdays and Sundays, as you can see. Exchanges are closed over the weekend. 
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3.	 Initialize the averages array: We will now make an array that has five elements for 
each day of the week. The values of the array will be initialized to 0:

averages = numpy.zeros(5)

This array will hold the averages for each weekday.

4.	 Calculate the averages: We already learned about the where function that returns 
indices of the array for elements that conform to a specified condition. The take 
function can use these indices and takes the values of the corresponding array 
items. We will use the take function to get the close prices for each week day. In 
the following loop we go through the date values which are 0 to 4, better known 
as Monday to Friday. We get the indices with the where function for each day and 
store it in the indices array. Then, we retrieve the values corresponding to the 
indices, using the take function. Finally we compute an average for each weekday 
and store it in the averages array, like so:

for i in range(5):
   indices = numpy.where(dates == i) 
   prices = numpy.take(close, indices)
   avg = numpy.mean(prices)
   print "Day", i, "prices", prices, "Average", avg
   averages[i] = avg

The loop prints the following output:

Day 0 prices [[ 339.32  351.88  359.18  353.21  355.36]] Average 
351.79
Day 1 prices [[ 345.03  355.2   359.9   338.61  349.31  355.76]] 
Average 350.635
Day 2 prices [[ 344.32  358.16  363.13  342.62  352.12  352.47]] 
Average 352.136666667
Day 3 prices [[ 343.44  354.54  358.3   342.88  359.56  346.67]] 
Average 350.898333333
Day 4 prices [[ 336.1   346.5   356.85  350.56  348.16  360.    
351.99]] Average 350.022857143

5.	 Find the maxima and minima: If you want, you can go ahead and find out which day 
has the highest, and which the lowest, average. However, it is just as easy to find this 
out with the max and min functions, as shown here:

top = numpy.max(averages)
print "Highest average", top
print "Top day of the week",  numpy.argmax(averages)
bottom = numpy.min(averages)
print "Lowest average", bottom
print "Bottom day of the week",  numpy.argmin(averages)
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The output is as follows:
Highest average 352.136666667
Top day of the week 2
Lowest average 350.022857143
Bottom day of the week 4

What just happened?
The argmin function returned the index of the lowest value in the averages array. The 
index returned was 4, which corresponds to Friday. The argmax function returned the index 
of the highest value in the averages array. The index returned was 2, which corresponds 
to Wednesday.

Have a go hero – looking at VWAP and TWAP
Hey, that was fun! For the sample data, it appears that Friday is the cheapest day and 
Wednesday is the day when your Apple stock will be worth the most. Ignoring the fact that 
we have very little data, is there a better method to compute the averages? Shouldn't we 
involve volume data as well? Maybe it makes more sense to you to do a time-weighted 
average. Give it a go! Calculate the VWAP and TWAP. You can find some hints on how to  
go about doing this at the beginning of this chapter.

Weekly summary
The data that we used in the previous Time for action tutorials is end-of-day data. In essence, 
it is summarized data compiled from trade data for a certain day. If you are interested in  
the cotton market and have decades of data, you might want to summarize and compress 
the data even further. Let's do that. Let's summarize the data of Apple stocks to give us 
weekly summaries.

Time for action – summarizing data
The data we will summarize will be for a whole business week from Monday to Friday. During 
the period covered by the data, there was one holiday on February 21st, President's Day. 
This happened to be a Monday and the US stock exchanges were closed on this day. As a 
consequence, there is no entry for this day, in the sample. The first day in the sample is a 
Friday, which is inconvenient. Use the following instructions to summerize data:

1.	 Selecting the first three weeks: To simplify, we will just have a look at the first three 
weeks in the sample—you can later have a go at improving this:
close = close[:16]
dates = dates[:16]

We will build on the code from the previous Time for action tutorial.
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2.	 Finding the first Monday: Commencing, we will find the first Monday in our sample 
data. Recall that Mondays have the code 0 in Python. This is what we will put in the 
condition of a where function. Then, we will need to extract the first element that 
has index 0. The result would be a multidimensional array. Flatten that with the 
ravel function:

# get first Monday
first_monday = numpy.ravel(numpy.where(dates == 0))[0]
print "The first Monday index is", first_monday

This will print the following output:

The first Monday index is 1

3.	 Finding the last Friday: The next logical step is to find the Friday before last Friday 
in the sample. The logic is similar to the one for finding the first Monday, and the 
code for Friday is 4. Additionally, we are looking for the second-to-last element 
with index 2.

# get last Friday
last_friday = numpy.ravel(numpy.where(dates == 4))[-2]
print "The last Friday index is", last_friday

This will give us the following output:

The last Friday index is 15

Creating arrays with multi-week indices: Next, create an array with the indices of all 
the days in the three weeks

weeks_indices = numpy.arange(first_monday, last_friday + 1)
print "Weeks indices initial", weeks_indices

4.	 Splitting the array: Split the array in pieces of size 5 with the split function.

weeks_indices = numpy.split(weeks_indices, 5)
print "Weeks indices after split", weeks_indices

It splits the array as follows:

Weeks indices after split [array([1, 2, 3, 4, 5]), array([ 6,  7,  
8,  9, 10]), array([11, 12, 13, 14, 15])]
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5.	 Calling the apply_along_axis function: In NumPy, dimensions are called axes. 
Now, we will get fancy with the apply_along_axis function. This function calls 
another function, which we will provide, to operate on each of the elements of an 
array. Currently, we have an array with three elements. Each array item corresponds 
to one week in our sample and contains indices of the corresponding items. Call 
the apply_along_axis function by supplying the name of our function, called 
summarize, that we will define shortly. Further specify the axis or dimension 
number (such as 1), the array to operate on, and a variable number of arguments 
for the summarize function, if any:

weeksummary = numpy.apply_along_axis(summarize, 1, weeks_indices, 
open, high, low, close)
print "Week summary", weeksummary

6.	 Write the summarize function: The summarize function returns, for each week, 
a tuple that holds the open, high, low, and close price for the week, similarly to  
end-of-day data:

def summarize(a, o, h, l, c):
    monday_open = o[a[0]]
    week_high = numpy.max( numpy.take(h, a) )
    week_low = numpy.min( numpy.take(l, a) )
    friday_close = c[a[-1]]
    
    return("APPL", monday_open, week_high, week_low, friday_close)

Notice that we used the take function to get the actual values from indices. 
Calculating the high and low values of the week was easily done with the max and min 
functions. The open for the week is the open for the first day in the week—Monday. 
Likewise, the close is the close for the last day of the week—Friday:

Week summary [['APPL' '335.8' '346.7' '334.3' '346.5']
 ['APPL' '347.89' '360.0' '347.64' '356.85']
 ['APPL' '356.79' '364.9' '349.52' '350.56']]

7.	 Writing the date to a file: Store the data in a file with the NumPy savetxt function:

numpy.savetxt("weeksummary.csv", weeksummary, delimiter=",", 
fmt="%s")

As you can see, we specify a filename, the array we want to store, a delimiter  
(in this case a comma), and the format we want to store floating point numbers in.
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The format string starts with a percent sign. Second is an optional flag. The—flag 
means left justify, 0 means left pad with zeroes, + means precede with + or -. 
Third is an optional width. The width indicates the minimum number of characters. 
Fourth, a dot is followed by a number linked to precision. Finally, there comes a 
character specifier; in our example, the character specifier is a string.

Character code Description

c character

d or i signed decimal integer

e or E scientific notation with e or E.

f decimal floating point

g,G use the shorter of e,E or f

o signed octal

s string of characters

u unsigned decimal integer

x,X unsigned hexadecimal integer

View the generated file in your favorite editor or type at the command line:

cat weeksummary.csv

APPL,335.8,346.7,334.3,346.5

APPL,347.89,360.0,347.64,356.85

APPL,356.79,364.9,349.52,350.56

What just happened?
We did something that is not even possible in some programming languages. We defined a 
function and passed it as an argument to the apply_along_axis function. Arguments for 
the summarize function were neatly passed by apply_along_axis.

Have a go hero – improving the code
Change the code to deal with a holiday. Time the code to see how big the speedup due to 
apply_along_axis is.
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Average true range
The average true range (ATR) is a technical indicator that measures volatility of stock prices. 
The ATR calculation is not important further but will serve as an example of several NumPy 
functions, including the maximum function.

Time for action – calculating the average true range
To calculate the average true range, follow the ensuing steps:

1.	 Selecting the last N days: The ATR is based on the low and high price of N days, 
usually the last 20 days.

N = int(sys.argv[1])
h = h[-N:]
l = l[-N:]

2.	 Retrieving the previous close days price: We also need to know the close price of 
the previous day:

previousclose = c[-N -1: -1]

For each day, we calculate the following:

The daily range—the difference between high and low price:

h – l

The difference between high and previous close:

h – previousclose

The difference between the previous close and the low price:

previousclose – l

3.	 Computing the true range: The max function returns the maximum of an array. 
Based on those three values, we calculate the so-called true range, which is the 
maximum of these values. We are now interested in the element-wise maxima 
across arrays – meaning the maxima of the first elements in the arrays, the second 
elements in the arrays, and so on. Use the NumPy maximum function instead of the 
max function for this purpose:

truerange = numpy.maximum(h - l, h - previousclose, previousclose 
- l) 

4.	 Initializing an atr array: Create an atr array of size N and initialize its values to 0:

atr = numpy.zeros(N)
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5.	 Initializing the first element: The first value of the array is just the average of the 
truerange array:

atr[0] = numpy.mean(truerange)

Calculate the other values with the following formula:

((N-1)PATR+TR)

N

Here, PATR is the previous day's ATR; TR is the true range:

for i in range(1, N):
   atr[i] = (N - 1) * atr[i - 1] + truerange[i]
   atr[i] /= N

What just happened?
We formed three arrays, one for each of the three ranges—daily range, the gap between  
the high of today and the close of yesterday, and the gap between the close of yesterday  
and the low of today. This tells us how much the stock price moved and, therefore, how 
volatile it is. The algorithm requires us to find the maximum value for each day. The max 
function that we used before can give us the maximum value within an array, but that is not 
what we want here. We need the maximum value across arrays, so we want the maximum 
value of the first elements in the three arrays, the second elements, and so on. In this Time 
for action tutorial, we saw that the maximum function can do this. After that, we computed a 
moving average of the true range values. In the following tutorials, we will learn better ways 
to calculate moving averages.

Have a go hero – taking the minimum function for a spin
Besides the maximum function, there is a minimum function. You can probably guess what it 
does. Make a small script or start an interactive session in IPython to prove your assumptions.

Simple moving average
The simple moving average is commonly used to analyze time-series data. To calculate it, we 
define a moving window of N periods, N days in our case. We move this window along the 
data and calculate the mean of the values inside the window.
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Time for action – computing the simple moving average
The moving average is easy enough to compute with a few loops and the mean function, 
but NumPy has a better alternative—the convolve function. The simple moving average 
is, after all, nothing more than a convolution with equal weights or, if you like, unweighted. 
Use the following steps to compute the simple moving average:

1. Setting the weights: Use the ones function to create an array of size N and elements 
initialized to 1; then, divide the array by N to give us the weights:

N = int(sys.argv[1])
weights = numpy.ones(N) / N
print "Weights", weights

For N = 5, this gives us the following output:

Weights [ 0.2  0.2  0.2  0.2  0.2]

2. Using the convolve function: Now call the convolve function with these weights:

c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,), 
unpack=True)
sma = numpy.convolve(weights, c)[N-1:-N+1]]

3. Plotting the simple moving average: From the array that convolve returned, we 
extracted the data in the center of size N. The following code makes an array of time 
values and plots with the matplotlib that we will be covering in a later chapter:

c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,), 
unpack=True)
sma = numpy.convolve(weights, c)[N-1:-N+1]
t = numpy.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()
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In the following chart, the smooth thick line is the 5-day simple moving average and 
the jagged thin line is the close price:

What just happened?
We computed the simple moving average for the close stock price. Truly great riches are 
within your reach. It turns out that the simple moving average is just a signal processing 
technique—a convolution with weights 1/N, where N is the size of the moving average 
window. We learned that the ones function can create an array with ones and the 
convolve function calculates the convolution of a data set with specified weights.

Exponential moving average
The exponential moving average is a popular alternative to the simple moving average. This 
method uses exponentially-decreasing weights. The weights for point in the past decrease 
exponentially but never reach zero. We will learn about the exp and linspace function 
while calculating the weights.
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Time for action – calculating the exponential moving average
Given an array, the exp function calculates the exponential of each array element. For 
example, look at the following code:

x = numpy.arange(5)
print "Exp", numpy.exp(x)

It gives the following output:

Exp [  1.           2.71828183   7.3890561   20.08553692  54.59815003]

The linspace function takes, as parameters, a start and a stop and optionally an array size. 
It returns an array of evenly-spaced numbers. Here is an example:

print "Linspace", numpy.linspace(-1, 0, 5)

This will give us the following output:

Linspace [-1.   -0.75 -0.5  -0.25  0.  ]

Let's calculate the exponential moving average for our data:

1. Initialize the weights: Now, back to the weights—calculate them with exp 
and linspace:

N = int(sys.argv[1])
weights = numpy.exp(numpy.linspace(-1., 0., N))

2. Normalization: Normalize the weights. The ndarray object has a sum method 
that we will use:

weights /= weights.sum()
print "Weights", weights

For N = 5, we get these weights:

Weights [ 0.11405072  0.14644403  0.18803785  0.24144538  
0.31002201]

3. Convolve: After that, it's easy going—we just use the convolve function that we 
learned about in the simple moving average tutorial. We will also plot the results:

c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,), 
unpack=True)
ema = numpy.convolve(weights, c)[N-1:-N+1]
t = numpy.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
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That gives this nice chart where, again, the close price is the thin jagged line and the 
exponential moving average is the smooth thick line:

What just happened?
We calculated the exponential moving average of the close price. First, we computed 
exponentially-decreasing weights with the exp and linspace functions. linspace gave 
us an array with evenly-spaced elements, and then, we calculated the exponential for these 
numbers. We called the ndarray sum method in order to normalize the weights. After that, 
we applied the convolve trick that we learned in the simple moving average tutorial.

Bollinger bands
Bollinger bands are yet another technical indicator. Yes, there are thousands of them. This 
one is named after its inventor and consists of three parts: First, a simple moving average. 
Second, an upper band of two standard deviations above this moving average—the standard 
deviation is derived from the same data with which the moving average is calculated. Third,  
a lower band of two standard deviations below the moving average.
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Time for action – enveloping with Bollinger bands
We already know how to calculate the simple moving average. So, if you need to, please 
review the Time for action tutorial in this chapter. This example will introduce the NumPy 
fill function. The fill function sets the value of an array to a scalar value. The function 
should be faster than array.flat = scalar or setting the values of the array one-by-one 
in a loop.

1. Calculate the Bollinger bands: Starting with an array called sma that contains the 
moving average values, we will loop through all the data sets corresponding to 
said values. After forming the data set, calculate the standard deviation. Note that 
it is necessary, at a certain point, to calculate the difference between each data 
point and the corresponding average value. If we did not have NumPy, we would 
loop through these points and subtract each of the values one-by-one from the 
corresponding average. However, the NumPy fill function allows us to construct 
an array having elements set to the same value. This enables us to save on one loop 
and subtract arrays in one go:

deviation = []
C = len(c)

for i in range(N - 1, C):
   if i + N < C:
      dev = c[i: i + N]
   else:
      dev = c[-N:]:]

   averages = numpy.zeros(N)
   averages.fill(sma[i - N - 1])
   dev = dev - averages 
   dev = dev ** 2
   dev = numpy.sqrt(numpy.mean(dev))))
   deviation.append(dev)

deviation = 2 * numpy.array(deviation)
upperBB = sma + deviation
lowerBB = sma – deviation

2. Plot the bands: To plot, we will use the following code (don't worry about it now; 
we will see how this works in Chapter 9, Plotting with Matplotlib):

t = numpy.arange(N - 1, C)
plot(t, c_slice, lw=1.0)
plot(t, sma, lw=2.0)
plot(t, upperBB, lw=3.0)
plot(t, lowerBB, lw=4.0)
show()
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Following is a chart of the Bollinger bands for our data. The jagged thin line in the middle 
represents the close price, the slightly thicker, smoother line crossing it is the moving average:

What just happened?
We worked out the Bollinger bands that envelope the close price of our data. More 
importantly, we got acquainted with the NumPy fill function. This function fills an 
array with a scalar value. This is the only parameter of the fill function.

Have a go hero – switching to exponential moving average
It is customary to choose the simple moving average to centre the Bollinger band on. The 
second-most popular choice is the exponential moving average, so try that as an exercise. 
You can find a suitable example in this chapter, if you need pointers.

Check that the fill function is faster or is as fast as array.flat = scalar, or setting 
the value in a loop.

Linear model
Many phenomena in science have a related linear relationship model. The NumPy linalg 
package deals with linear algebra computations. We will begin with the assumption that a 
price value can be derived from N previous prices based on a linear relationship relation.
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Time for action – predicting price with a linear model
Keeping an open mind, let's assume that we can express a stock price as a linear combination 
of previous values, that is, a sum of those values multiplied by certain coefficients that 
we need to determine. In linear algebra terms, this boils down to finding a least-squares 
solution. The recipe goes as follows.

1.	 Form a price vector: First, form a vector bbx containing N price values:

bbx = c[-N:]
bbx = b[::-1]
print "bbx", x

The result is as follows:

bbx [ 351.99  346.67  352.47  355.76  355.36]

2.	 Pre-initialize the matrix: Second, pre-initialize the matrix A to be N-by-N and 
contain zeroes:

A = numpy.zeros((N, N), float)
print "Zeros N by N", A

Zeros N by N [[ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]]

3.	 Fill the matrix: Third, fill the matrix A with N preceding price values for each value 
in bbx:

for i in range(N):
   A[i, ] = c[-N - 1 - i: - 1 - i]
print "A", A

Now, A looks like this:

A [[ 360.    355.36  355.76  352.47  346.67]
 [ 359.56  360.    355.36  355.76  352.47]
 [ 352.12  359.56  360.    355.36  355.76]
 [ 349.31  352.12  359.56  360.    355.36]
 [ 353.21  349.31  352.12  359.56  360.  ]]
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4.	 Get the least squares solution: The objective is to determine the coefficients that 
satisfy our linear model, by solving the least-squares problem. Employ the lstsq 
function of the NumPy linalg package to do that:

(x, residuals, rank, s) = numpy.linalg.lstsq(A, b)

print x, residuals, rank, s

The result is as follows:

[ 0.78111069 -1.44411737  1.63563225 -0.89905126  0.92009049] 
[] 5 [  1.77736601e+03   1.49622969e+01   8.75528492e+00   
5.15099261e+00   1.75199608e+00]

The tuple returned contains the coefficients xxb that we were after, an array 
comprising of residuals, the rank of matrix A, and the singular values of A.

5.	 Extrapolate to the next day: Once we have the coefficients of our linear model, we 
can predict the next price value. GetCompute the dot product (with the NumPy dot 
function) of the coefficients and the last known N prices:

print numpy.dot(b, x)

The dot product is the linear combination of the coefficients xxb and the prices x. 
As a result, we get:

357.939161015

I looked it up; the actual close price of the next day was 353.56. So, our estimate 
with N = 5 was not that far off.

What just happened?
We predicted tomorrow's stock price today. If this works in practice, we could retire 
early! See, this book was a good investment after all! We designed a linear model for the 
predictions. The financial problem was reduced to a linear algebraic one. NumPy's linalg 
package has a practical lstsq function that helped us with the task at hand—estimating 
the coefficients of a linear model. After obtaining a solution, we plugged the numbers in the 
NumPy dot function that presented us an estimate through linear regression.

Trend lines
A trend line is a line among a number of so-called pivot points on a stock chart. As the name 
suggests, the line's trend portrays the trend of the price development. In the past, traders 
drew trend lines on paper; but, nowadays, we can let a computer draw it for us. In this 
tutorial, we shall resort to a very simple approach that is probably not very useful in real life, 
but it should clarify the principle well.
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Time for action – drawing trend lines
Follow the ensuing steps to draw trend lines:

1. Determine the pivots: First, we need to determine the pivot points. We shall 
pretend they are equal to the arithmetic mean of the high, low, and close price:

h, l, c = numpy.loadtxt('data.csv', delimiter=',', usecols=(4, 5,  
6), unpack=True)

pivots = (h + l + c) / 3
print "Pivots", pivots

From the pivots, we can deduce the so-called resistance and support levels. The 
support level is the lowest level at which the price rebounds. The resistance 
level is the highest level at which the price bounces back. These are not natural 
phenomena, mind you, they are merely estimates. Based on these estimates, it is 
possible to draw support and resistance trend lines. We will define the daily spread 
to be the difference of the high and low price.

2. Fit data to a line: Define a function to fit line to data to a line where y = at + b. 
The function should return a and b. This is another opportunity to apply the lstsq 
function of the NumPy linalg package. Rewrite the line equation to y = Ax, where 
A = [t 1] and x = [a b]. Form A with the NumPy ones and vstack function:

def fit_line(t, y):
   A = numpy.vstack([t, numpy.ones_like(t)]).))]).T
   return numpy.linalg.lstsq(A, y)[0]

3. Determine the support and resistance levels: Assuming that support levels are one 
daily spread below the pivots, and that resistance levels are one daily spread above 
the pivots, fit the support and resistance trend lines:

t = numpy.arange(len(c))
sa, sb = fit_line(t, pivots - (h - l)) 
ra, rb = fit_line(t, pivots + (h - l))
support = sa * t + sb
resistance = ra * t + rb

4. Analyze the bands: At this juncture, we have all the necessary information to 
draw the trend lines, however, it is wise to check how many points fall between  
the support and resistance levels. Obviously, if only a small percentage of the  
data is between the trend lines, then this setup is of no use to us. Make up a 
condition for points between the bands and select with the where function 
based on the condition:

condition = (c > support) & (c < resistance)
print "Condition", condition
between_bands = numpy.where(condition)
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These are the condition values:

Condition [False False  True  True  True  True  True False False  
True False False
 False False False  True False False False  True  True  True  True 
False False  True  True  True False  True]

Double-check the values:

print support[between_bands]
print c[between_bands]
print resistance[between_bands]

The array returned by the where function has rank 2, so call the ravel function 
before calling the len function:

between_bands = len(numpy.ravel(between_bands))))
print "Number points between bands", between_bands
print "Ratio between bands", float(between_bands)/len(c)

You will get the following result:

Number points between bands 15
Ratio between bands 0.5

As an extra bonus, we gained a predictive model. Extrapolate the next day resistance 
and support levels:

print "Tomorrows support", sa * (t[-1] + 1) + sb
print "Tomorrows resistance", ra * (t[-1] + 1) + rb

This results in:

Tomorrows support 349.389157088
Tomorrows resistance 360.749340996

Another approach to figure out how many points are between the support and 
resistance estimates is to use [] and intersect1d. Define selection criteria in the 
[] operatpr and intersect the results with the intersect1d function.

a1 = c[c > support]
a2 = c[c < resistance]
print "Number of points between bands 2nd approach" ,len(numpy.
intersect1d(a1, a2))

Not surprisingly, we get:

Number of points between bands 2nd approach 15
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5. Plot the bands: Once more, we will plot the results:

plot(t, c)
plot(t, support)
plot(t, resistance)
show()

In the preceding plot, we have the price data and the corresponding support and  
resistance lines.

What just happened?
We drew trend lines without having to mess around with rulers, pencils, and paper charts. 
We defined a function that can fit data to a line with the NumPy vstack, ones, and lstsq 
functions. We fit the data in order to define support and resistance trend lines. Then we 
figured out how many points are within the support and resistance range. We did this using 
two separate methods that produced the same result.

The first method used the where function with a Boolean condition. The second method 
made use of the [] operator and the intersect1d function. The intersect1d function 
returns an array of common elements from two arrays.
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Methods of ndarray
The NumPy ndarray class has a lot of methods that work on the array. Most of the time, 
these methods return an array. You may have noticed that many of the functions that are 
part of the NumPy library have a counterpart with the same name and functionality in the 
ndarray object. This is mostly due to the historical development of NumPy.

The list of ndarray methods is pretty long, so we cannot cover them all. The mean, var, 
sum, std, argmax, argmin, and mean functions that we saw earlier are also ndarray 
methods.

To clip and compress arrays, look at the following section:

Time for action – clipping and compressing arrays 
1.	 Here are a few examples of ndarray methods. The clip method returns a clipped 

array, so that all values above a maximum value are set to the maximum and values 
below a minimum are set to the minimum value. Clip an array with values 0 to 4 to 1 
and 2:

a = numpy.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2)

This gives the following output:

a = [0 1 2 3 4]
Clipped [1 1 2 2 2]

2.	 The ndarray compress method returns an array based on a condition. For 
instance, look at the following code:

a = numpy.arange(4)
print a
print "Compressed", a.compress(a > 2)

This returns the following output:

[0 1 2 3]
Compressed [3]
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What just happened?
We created an array with values 0 to 3 and selected the last element with the compress 
function based on the condition a > 2.

Factorial
Many programming books have an example of calculating the factorial. We should not break 
with this tradition.

Time for action – calculating the factorial
The ndarray has the prod method, which computes the product of the elements in an 
array.

1.	 Call the prod function: Calculate the factorial of eight. To do that, generate an array 
with values 1 to 8 and call the prod function on it:

b = numpy.arange(1, 9)
print "b =", b
print "Factorial", b.prod()

Check the result with your pocket calculator:

b = [1 2 3 4 5 6 7 8]
Factorial 40320

This is nice, but what if we want to know all the factorials from 1 to 8?

2.	 Call cumprod: No problem! Call the cumprod method, which computes the 
cumulative product of an array:

print "Factorials", b.cumprod()

It's pocket calculator time again:

Factorials [    1     2     6    24   120   720  5040 40320]

What just happened?
We used the prod and cumprod functions to calculate factorials.
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Summary
This chapter informed us about a great number of common NumPy functions. We read a file 
with loadtxt and wrote to a file with savetxt. We made an identity matrix with the eye 
function. We read a CSV file containing stock quotes with the loadtxt function. The NumPy 
average and mean functions allow one to calculate the weighed average and arithmetic 
mean of a data set.

A few common statistics functions were also mentioned: First, the min and max functions we 
used to determine the range of the stock prices. Second, the median function that gives the 
median of a data set. Finally, the std and var functions that return the standard deviation 
and variance of a set of numbers.

We calculated the simple stock returns with the diff function that returns the back 
differences between sequential elements. The log function computes the natural 
logarithms of array elements.

By default, loadtxt tries to convert all data into floats. The loadtxt function has a special 
parameter for this purpose. The parameter is called converters and is a dictionary that 
links columns with the so-called converter functions.

We defined a function and passed it as an argument to the apply_along_axis 
function. We implemented an algorithm with the requirement to find the maximum  
value across arrays.

We learned that the ones function can create an array with ones and the convolve 
function calculates the convolution of a data set with specified weights.

We computed exponentially-decreasing weights with the exp and linspace functions. 
Linspace gave us an array with evenly-spaced elements, and then we calculated the 
exponential for these numbers. We called the ndarray sum method in order to normalize 
the weights.

We got acquainted with the NumPy fill function. This function fills an array with a scalar 
value, the only parameter of the fill function.

After this tour through the common NumPy functions, we will continue covering 
convenience NumPy functions in the next chapter.

                 

       



4
Convenience Functions for  

Your Convenience

As we have noticed, NumPy has a great number of functions. Many of these 
functions are there just for your convenience. Knowing these functions will 
greatly increase your productivity. This includes functions that select certain 
parts of your arrays (based on a Boolean condition, for instance) or manipulate 
polynomials. An example of computing correlation of stock returns is given to 
give you a taste of data analysis in NumPy.

In this chapter, we shall cover the following topics:

 � Data selection and extraction

 � Simple data analysis

 � Examples of correlation of returns

 � Polynomials

 � Linear algebra functions

In the previous chapter, we had one single data file to play around with. Things have 
significantly improved in this chapter—we now have two data files. Let's go ahead and 
explore the data with NumPy.
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Correlation
Have you noticed that the stock price of some companies is closely followed by another one, 
usually a rival in the same sector? The theoretical explanation is that, because these two 
companies are in the same type of business, they share the same challenges, require the 
same materials and resources, and compete for the same type of customers.

You could think of many possible pairs, but you would want to check whether a real 
relationship exists. One way is to have a look at the correlation of the stock returns of 
both stocks. A high correlation implies a relationship of some sort. It is not proof though, 
especially if you don't use sufficient data.

Time for action – trading correlated pairs
For this tutorial, we will use two sample data sets, containing the bare minimum of end-
of-day price data. The first company is BHP Billiton (BHP), which is active in mining of 
petroleum, metals, and diamonds. The second is Vale (VALE), which is also a metals 
and mining company. So there is some overlap, albeit not hundred percent. For trading 
correlated pairs, follow the ensuing steps:

1. Load the data: First, load the data, specifically the close price of the two securities, 
from the CSV files in the example code directory of this chapter and calculate the 
returns. If you don't remember how to do it, there are plenty of examples in the 
previous chapter.

2. Covariance: Covariance tells us how two variables vary together; it is nothing more 
than unnormalized correlation. Compute the covariance matrix from the returns 
with the cov function (it's not strictly necessary to do this, but it will allow us to 
demonstrate a few matrix operations):

covariance = numpy.cov(bhp_returns, vale_returns) 
print "Covariance", covariance

The covariance matrix is as follows:

Covariance [[ 0.00028179  0.00019766]
[ 0.00019766  0.00030123]]

3. Diagonal values: View the values on the diagonal with the diagonal function:

print "Covariance diagonal", covariance.diagonal()

The diagonal values of the covariance matrix are as follows:

Covariance diagonal [ 0.00028179  0.00030123]

Notice that the values on the diagonal are not equal to each other, this is different 
from the correlation matrix.
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4. Trace: Compute the trace, the sum of the diagonal values, with the trace function:

print "Covariance trace", covariance.trace()

The trace values of the covariance matrix are as follows:

Covariance trace 0.00058302354992

5. Correlation from covariance: The correlation of two vectors is defined as the 
covariance, divided by the product of the respective standard deviations of the 
vectors. The equation for vectors a and b is:

Corr(a,b)
cov(a,b)

b b

=

Try it out:

print covariance/ (bhp_returns.std() * vale_returns.std())

The correlation matrix is as follows:

[[ 1.00173366  0.70264666]
[ 0.70264666  1.0708476 ]]

6. Correlation coefficients: We will measure the correlation of our pair with the 
correlation coefficient. The correlation coefficient takes values between -1 to 1. 
The correlation of a set of values with itself is 1 by definition. This would be the 
ideal value; however, we will be also happy with a slightly lower value. Calculate 
the correlation coefficient (or, more accurately, the correlation matrix) with the 
corrcoef function:

print "Correlation coefficient", numpy.corrcoef(bhp_returns, vale_
returns)

The coefficients are as follows:

[[ 1.          0.67841747]
[ 0.67841747  1.        ]]

The values on the diagonal are just the correlations of the BHP and VALE with 
themselves and are, therefore, equal to 1. In all probability, no real calculation takes 
place. The other two values are equal to each other since correlation is symmetrical, 
meaning that the correlation of BHP with VALE is equal to the correlation of VALE 
with BHP. It seems that the correlation is not that strong.
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7. Breakout: Another important point is whether the two stocks under consideration 
are in sync or not. Two stocks are considered out of sync if their difference is two 
standard deviations from the mean of the differences.

If they are out of sync, we could initiate a trade, hoping that they eventually will 
get back in sync again. Compute the difference between the close prices of the two 
securities to check the synchronization:

difference = bhp - vale

Check whether the last difference in price is out of sync; see the following code:

avg = numpy.mean(difference)
dev = numpy.std(difference)
print "Out of sync", numpy.abs(difference[-1] – avg) > 2 * dev

Unfortunately, we cannot trade yet:

Out of sync False

8. Plotting: Plotting requires Matplotlib; this will be discussed in Chapter 9, Plotting 
with Matplotlib. Plotting can be done as follows:

t = numpy.arange(len(bhp_returns))
plot(t, bhp_returns, lw=1)
plot(t, vale_returns, lw=2)
show()

The resulting plot:
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What just happened?
We analyzed the relation of the closing stock prices of BHP and VALE. To be precise, we 
calculated the correlation of their stock returns. This was achieved with the corrcoef 
function. Further, we saw how the covariance matrix can be computed, from which the 
correlation can be derived. As a bonus, a demonstration was given of the diagonal and 
trace functions that can give us the diagonal values and the trace of a matrix, respectively.

Pop quiz – calculating covariance
1. Which function returns the covariance of two arrays?

a. covariance

b. covar

c. cov

d. cvar

Polynomials
Do you like calculus? Me, I love it! One of the ideas in calculus is Taylor expansion, that is, 
representing a differentiable function as an infinite series. In practice, this means that any 
differentiable, and therefore continuous, function can be estimated by a polynomial of a high 
degree. The terms of the higher degree would then be assumed to be negligibly small.

Time for action – fitting to polynomials
The NumPy polyfit function can fit a set of data points to a polynomial even if the 
underlying function is not continuous.

1. Polynomial fit: Continuing with the price data of BHP and VALE, let's look at the 
difference of their close prices and fit it to a polynomial of the third power:

bhp=numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,),  
  unpack=True)
vale=numpy.loadtxt('VALE.csv', delimiter=',', usecols=(6,),  
  unpack=True)
t = numpy.arange(len(bhp))
poly = numpy.polyfit(t, bhp - vale, int(sys.argv[1]))
print "Polynomial fit", poly

The polynomial fit (in this example, a cubic polynomial was chosen):

Polynomial fit [  1.11655581e-03  -5.28581762e-02   5.80684638e-01   
5.79791202e+01]
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2. Extrapolate to the next day: The numbers you see are the coefficients of the 
polynomial. Extrapolate to the next value with the polyval function and the 
polynomial object we got from the fit:

print "Next value", numpy.polyval(poly, t[-1] + 1)

The next value we predict will be:

Next value 57.9743076081

3. Find the roots: Ideally, the difference between the close prices of BHP and VALE 
should be as small as possible. In an extreme case, it might be zero at some point. 
Find out when our polynomial fit reaches zero with the roots function:

print "Roots", numpy.roots(poly)

The roots of the polynomial are as as follows:

Roots [ 35.48624287+30.62717062j  35.48624287-30.62717062j 
-23.63210575 +0.j        ]

The roots are complex; that's no good.

4. Differentiate: Another thing we learned in calculus class was to find extremums—
these could be potential maxima or minima. Remember, from calculus, that 
these are the points where the derivative of our function is zero. Differentiate the 
polynomial fit with the polyder function:

der = numpy.polyder(poly)
print "Derivative", der

The coefficients of the derivative polynomial are as follows:

Derivative [ 0.00334967 -0.10571635  0.58068464]

The numbers you see are the coefficients of the derivative polynomial.

5. Find the extrema: Get the roots of the derivative:

print "Extremas", numpy.roots(der)

The extremas that we get are:

Extremas [ 24.47820054   7.08205278]

Let's double check; compute the values of the fit with polyval:

vals = numpy.polyval(poly, t)

6. Double-check: Now, find the maximum and minimum values with argmax and 
argmin:

vals = numpy.polyval(poly, t)
print numpy.argmax(vals)
print numpy.argmin(vals)
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This gives us the expected results. Ok, not quite the same results, but, if we 
backtrack to step 1, we can see that t was defined with the arange function:

7
24

7. Plot: Plot the data and the fit it as follows:

plot(t, bhp - vale)
plot(t, vals)
show()

It results in this plot:

Obviously, the smooth line is the fit and the jagged line is the underlying data. It's not that 
good a fit, so you might want to try a higher order polynomial.

What just happened?
We fit data to a polynomial with the polyfit function. We learned about the polyval 
function that computes the values of a polynomial, the roots function that returns the roots 
of the polynomial, and the polyder function that gives back the derivative of a polynomial.
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Have a go hero – improving the fit
There are a number of things you could do to improve the fit. Try a different power as, in this 
tutorial, a cubic polynomial was chosen. Consider smoothing the data before fitting it. One 
way you could smooth is with a moving average. Examples of simple and exponential moving 
average calculations can be found in the previous chapter.

On-balance volume
Volume is a very important variable in investing; it indicates how big a price move is. The 
on-balance volume indicator is one of the simplest stock price indicators. It is based on the 
close price of the current and previous days and the volume of the current day. For each day, 
if the close price today is higher than the close price of yesterday then the value of the on-
balance volume is equal to the volume of today. On the other hand, if today's close price is 
lower than yesterday's close price then the value of the on-balance volume indicator is the 
difference between the on-balance volume and the volume of today. If the close price did 
not change then the value of the on-balance volume is zero.

Time for action – balancing volume
In other words we need to multiply the sign of the close price with the volume. In this 
tutorial, we will go over two approaches to this problem, one using the NumPy sign 
function, and the other using the NumPy piecewise function.

1. Load the data: Load the BHP data into a close and volume array:

c, v=numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6, 7),  
  unpack=True)

Compute the absolute value changes. Calculate the change of the close price with 
the diff function. The diff function computes the difference between two 
sequential array elements and returns an array containing these differences:

change = numpy.diff(c)
print "Change", change

The changes of the close price are shown as follows:

Change [ 1.92 -1.08 -1.26  0.63 -1.54 -0.28  0.25 -0.6   2.15  
0.69 -1.33  1.16
  1.59 -0.26 -1.29 -0.13 -2.12 -3.91  1.28 -0.57 -2.07 -2.07  2.5   
1.18
-0.88  1.31  1.24 -0.59]
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2. Determine the signs: The NumPy sign function returns the signs for each element 
in an array. -1 is returned for a negative number, 1 for a positive number, and 0, 
otherwise. Apply the sign function to the change array:

signs = numpy.sign(change)
print "Signs", signs

The signs of the change array are as follows:

Signs [ 1. -1. -1.  1. -1. -1.  1. -1.  1.  1. -1.  1.  1. -1. -1. 
-1. -1. -1.
-1. -1. -1.  1.  1.  1. -1.  1.  1. -1.]

Alternatively, we can calculate the signs with the piecewise function. The 
piecewise function, as its name suggests, evaluates a function piece-by-piece. Call 
the function with the appropriate return values and conditions:

pieces = numpy.piecewise(change, [change < 0, change > 0], [-1,  
  1])
print "Pieces", pieces

The signs are shown again, as follows:

Pieces [ 1. -1. -1.  1. -1. -1.  1. -1.  1.  1. -1.  1.  1. -1. 
-1. -1. -1. -1.
-1. -1. -1.  1.  1.  1. -1.  1.  1. -1.]

Check that the outcome is the same:

print "Arrays equal?", numpy.array_equal(signs, pieces)

And the outcome is as follows:

Arrays equal? True

3. On-balance volume: The on-balance volume depends on the change of the previous 
close, so we can not calculate it for the first day in our sample:

print "On balance volume", v[1:] * signs

The on-balance volume is as follows:

[ 2620800. -2461300. -3270900.  2650200. -4667300. -5359800.  
7768400.
 -4799100.  3448300.  4719800. -3898900.  3727700.  3379400. 
-2463900.
 -3590900. -3805000. -3271700. -5507800.  2996800. -3434800. 
-5008300.
 -7809799.  3947100.  3809700.  3098200. -3500200.  4285600.  
3918800.
 -3632200.]
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What just happened?
We computed the on-balance volume that depends on the change of the closing price. 
Using the NumPy sign and piecewise functions, we went over two different methods 
to determine the sign of the change.

The mode
In statistics, the mode summarizes a set of values, just like an average or median. The mode 
is the most frequent value or values. For instance, if we have the values 0, 1, 2, 2, 3, then the 
mode would be 2. The mode doesn't have to be a unique number. The mode could consist of 
multiple numbers as long as these numbers are the most frequent ones. For example, if we 
have the numbers 1, 1, 2, 2, 3, the mode would be 1 and 2.

Time for action – determining the mode of stock returns
When it comes to determining the mode of stock returns we can do two things—we can try 
to find the peak of the histogram of said returns, or we can turn the returns into integers and 
find the mode of those integers. If we don't do this, it is impossible to determine the mode; 
we would have to deal with a large number of unique numbers.

1. Unique numbers: The unique function returns the unique numbers of an array. 
Here is an example of how it works:

print "Unique", numpy.unique(numpy.array([2, 2]))

As you would expect, one unique number is returned:

Unique [2]

Now, load the data and find out how many unique stock returns there are:

bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,),  
  unpack=True)
bhp_returns = numpy.diff(bhp) / bhp[ : -1]
print "BHP returns", bhp_returns
print "Total number", len(bhp_returns), "Unique number",  
  len(numpy.unique(bhp_returns))

Just as suspected, there are a lot of unique stock returns; actually, all of them  
are unique.

BHP returns [ 0.02048656 -0.01129235 -0.01332487  0.00675241 
-0.01639519 -0.00303063
  0.00271415 -0.00649632  0.02343069  0.00734746 -0.0140592   
0.01243701
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  0.01683787 -0.00270777 -0.01347118 -0.0013761  -0.02247191 
-0.04239861
  0.01449439 -0.00636232 -0.0232532  -0.02380679  0.02945335  
0.01350423
  0.01163053 -0.00982252  0.01476722  0.01377472 -0.00646504]
Total number 29 Unique number 29

2. Histogram: NumPy has a histogram function that we will use. This method is 
sensitive to the number of bins. Set the number of bins to the square root of the 
number of array elements (this is a rule of thumb that works quite well):

nbins = numpy.sqrt(len(bhp_returns))

Call the histogram function with the number of bins we calculated. It's shown 
as follows:

N, bins = numpy.histogram(bhp_returns, bins=nbins)
print "Counts", N, "Bins", bins

The histogram function returns the number of occurrences within each bin and 
the bins themselves:

Counts [ 1  5 10  9  4] Bins [-0.04239861 -0.02802822 -0.01365783  
0.00071256  0.01508295  0.02945335]

Determine the mode by finding the bin corresponding to the highest count in  
the histogram:

index_max = N.argmax()
print "mode", bins[index_max]

The mode is as follows:

mode -0.0136578288488

3. Converting to promilles: It is a bit arbitrary whether we should convert the stock 
returns to promilles or percentages, as we have integer values. Convert the stock 
returns to promilles with the astype function:

bhp_promilles = (bhp_returns * 1000).astype(int)

4. Sort: Sort the values by calling the sort function:

sorted = numpy.sort(bhp_promilles)
print "Sorted", sorted

The sorted values should be as follows:

Sorted [-42 -23 -23 -22 -16 -14 -13 -13 -11  -9  -6  -6  -6  -3  
-2  -1   2   6
   7  11  12  13  13  14  14  16  20  23  29]
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5. Indices of changed values: Now, we need to find the indices where values changed:

diffed = numpy.diff(sorted)
#values changed
indices = numpy.where(diffed > 0)
print "Indices where values changed", indices

The indices are as follows:

Indices where values changed (array([ 0,  2,  3,  4,  5,  7,  8,  
9, 12, 13, 14, 15, 16, 17, 18, 19, 20,
       22, 24, 25, 26, 27]),)

6. Number of repeats: Figure out the number of repeats:

# number of repeats
repeats = numpy.diff(indices)
print "Repeats", repeats

The repeats that we get are:

Repeats [[2 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 2 2 1 1 1]]

7. Index with the most repeats: Find the index with the most repeats:

most_repeats_index = numpy.argmax(repeats)
print "Most repeats index", most_repeats_index

The index with the most repeats is:

Most repeats index 7

8. Index in the sorted array: Locate the index in the original sorted array of the most 
frequent promille value:

index = numpy.ravel(indices)[most_repeats_index + 1]
print "Index", index

The index with the most frequent promille value is:

Index 12

9. The mode from the sorted array: Get the mode. Look at the following code:

print "Mode", sorted[index]

The mode of the array is:

Mode -6
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What just happened?
We determined the mode of sample values with a histogram and by converting the values to 
integers. The most important thing is that we learned about the histogram function.

Simulation
Often, you would want to try something out. Play around, experiment, but preferably 
without blowing things up or getting dirty. NumPy is perfect for experimentation. We will use 
NumPy to simulate a trading day, without actually losing money. Many people like to buy on 
the dip or, in other words, wait for the price of stocks to drop before buying. A variant of that 
is to wait for the price to drop a small percentage say 0.1 percent below the opening price of 
the day.

Time for action – avoiding loops with vectorize
The vectorize function is a yet another trick to reduce the number of loops in your 
programs. We will let it calculate the profit of a single trading day:

1. Load data: First, load the data:

o, h, l, c = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(3, 
4, 5, 6), unpack=True)

2. Call vectorize: The vectorize function is the NumPy equivalent of the Python map 
function. Call the vectorize function, giving it as an argument the calc_profit 
function that we still have to write: 

func = numpy.vectorize(calc_profit)

3. Apply func: We can now apply func as if it is a function. Apply the func result that 
we got, to the price arrays:

profits = func(o, h, l, c)

4. Write the function: The calc_profit function is pretty simple. First, we try to buy 
slightly below the open price. If this is outside of the daily range, then, obviously, 
our attempt failed and no profit was made, or we incurred a loss, therefore we will 
return 0. Otherwise, we sell at the close price and the profit is just the difference 
between the buy price and the close price. Actually, it is more interesting to have a 
look at the relative profit:

def calc_profit((open, high, low, close):
   #buy just below the open
   buy = open * float(sys.argv[1])
   # daily range
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   if low <  buy < high:
      return (close - buy)/buy
   else:
      return 0
print "Profits", profits

5. Summary of the trades: There are two days with zero profits: there was either no 
net gain, or a loss. Select the days with trades and calculate averages:

real_trades = profits[profits != 0]
print "Number of trades", len(real_trades), round(100.0 * 
len(real_trades)/len(c), 2), "%"
print "Average profit/loss %", round(numpy.mean(real_trades) * 
100, 2)

The trades summary are shown as follows:

Number of trades 28 93.33 %
Average profit/loss % 0.02

6. Winning trades: As optimists, we are interested in winning trades with a gain 
greater than zero. Select the days with winning trades and calculate averages:

winning_trades = profits[profits > 0]
print "Number of winning trades", len(winning_trades), round(100.0  
  * len(winning_trades)/len(c), 2), "%"
print "Average profit %", round(numpy.mean(winning_trades) * 100,  
  2)

The winning trades are:

Number of winning trades 16 53.33 %
Average profit % 0.72

7. Losing trades: As pessimists, we are interested in losing trades with profit less than 
zero. Select the days with losing trades and calculate averages:

losing_trades = profits[profits < 0]
print "Number of losing trades", len(losing_trades), round(100.0 *  
  len(losing_trades)/len(c), 2), "%"
print "Average loss %", round(numpy.mean(losing_trades) * 100, 2)

The losing trades are:

Number of losing trades 12 40.0 %
Average loss % -0.92
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What just happened?
We vectorized a function, which is just another way to avoid using loops. We simulated 
a trading day with a function, which returned the relative profit of each day's trade. We 
printed a summary of the losing and winning trades.

Have a go hero – analyzing consecutive wins and losses
Although the average profit is positive, it is also important to know whether we had to 
endure a long streak of consecutive losses. If this is the case, we might be left with little or 
no capital, and then the average profit would not matter that much.

Find out if there was such a losing streak. If you want, you can also find out if there was a 
prolonged winning streak.

Smoothing
Noisy data is difficult to deal with, so we often need to do some smoothing. Besides 
calculating moving averages, we can use one of the NumPy functions to smooth data.

The hanning function is a windowing function formed by a weighted cosine. There are 
other window functions that will be covered in greater detail in later chapters.

Time for action – smoothing with the hanning function
We will use the hanning function to smooth arrays of stock returns, as shown in the 
following steps:

1. Computing the weights: Call the hanning function to compute weights, for a 
certain N length window (in this example, N is 8):

N = int(sys.argv[1])
weights = numpy.hanning(N)
print "Weights", weights

The weights are as follows:

Weights [ 0.          0.1882551   0.61126047  0.95048443  
0.95048443  0.61126047
  0.1882551   0.        ]
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2. Smoothing the stock returns: Calculate the stock returns for the BHP and VALE 
quotes using convolve with normalized weights:

bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,),  
  unpack=True)
bhp_returns = numpy.diff(bhp) / bhp[ : -1]
smooth_bhp = numpy.convolve(weights/weights.sum(), bhp_returns) 
  [N-1:-N+1]
vale = numpy.loadtxt('VALE.csv', delimiter=',', usecols=(6,),  
  unpack=True)
vale_returns = numpy.diff(vale) / vale[ : -1]
smooth_vale = numpy.convolve(weights/weights.sum(), vale_returns) 
  [N-1:-N+1]

3. Plotting: Plotting with Matplotlib:

t = numpy.arange(N - 1, len(bhp_returns))
plot(t, bhp_returns[N-1:], lw=1.0)
plot(t, smooth_bhp, lw=2.0)
plot(t, vale_returns[N-1:], lw=1.0)
plot(t, smooth_vale, lw=2.0)
show()

The chart would appear as follows:

The thin lines on the chart are the stock returns and the thick lines are the result 
of smoothing. As you can see, the lines cross a few times. These points might be 
important, because the trend might have changed there. Or, at least, the relation 
of BHP to VALE might have changed. These turning inflection points probably occur 
often, so we might want to project into the future.
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4. Fitting to polynomials: Fit the result of the smoothing step to polynomials:

K = int(sys.argv[1])
t = numpy.arange(N - 1, len(bhp_returns))
poly_bhp = numpy.polyfit(t, smooth_bhp, K)
poly_vale = numpy.polyfit(t, smooth_vale, K)

5. Find the crossing points: Now, we need to compute for a situation where the 
polynomials we found in the previous step are equal to each other. This boils down 
to subtracting the polynomials and finding the roots of the resulting polynomial. 
Subtract the polynomials using polysub:

poly_sub = numpy.polysub(poly_bhp, poly_vale)
xpoints = numpy.roots(poly_sub)
print "Intersection points", xpoints

The points are shown as follows:

Intersection points [ 27.73321597+0.j          27.51284094+0.j          
24.32064343+0.j
  18.86423973+0.j          12.43797190+1.73218179j  12.43797190-
1.73218179j
   6.34613053+0.62519463j   6.34613053-0.62519463j]

6. Getting the real numbers: The numbers we get are complex; that is not good for us, 
unless there is such a thing as imaginary time. Check which numbers are real with 
the isreal function:

reals = numpy.isreal(xpoints)
print "Real number?", reals

The result is as follows:

Real number? [ True  True  True  True False False False False]

Some of the numbers are real, so select them with the select function. The 
select function forms an array by taking elements from a list of choices, based 
on a list of conditions:

xpoints = numpy.select([reals], [xpoints])
xpoints = xpoints.real
print "Real intersection points", xpoints

The real intersection points are as follows:

Real intersection points [ 27.73321597  27.51284094  24.32064343  
18.86423973   0.           0.   0.  0.]
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7. Stripping zeroes: We managed to pick up some zeroes. The trim_zeros function 
strips the leading and trailing zeros from a one-dimensional array. Get rid of the 
zeroes with trim_zeros:

print "Sans 0s", numpy.trim_zeros(xpoints)

The zeroes are gone, and the output is shown as follows:

Sans 0s [ 27.73321597  27.51284094  24.32064343  18.86423973]

What just happened?
We applied the hanning function to smooth arrays containing stock returns. We subtracted 
two polynomials with the polysub function. We checked for real numbers with the isreal 
function and selected the real numbers with the select function. Finally, we stripped 
zeroes from an array with the strip_zeroes function.

Have a go hero – smoothing variations
Experiment with the other smoothing functions—hamming, blackman, bartlett, and 
kaiser. They work more-or-less in the same way as hanning.

Summary
We calculated the correlation of the stock returns of two stocks with the corrcoef function. 
As a bonus, a demonstration of the diagonal and trace functions was given, which can 
give us the diagonal and trace of a matrix.

We fit data to a polynomial with the polyfit function. We learned about the polyval 
function that computes the values of a polynomial, the roots function that returns the 
roots of the polynomial, and the polyder function that gives back the derivative of 
a polynomial.

Hopefully, we increased our productivity so that we can continue in the next chapter with 
matrices and universal functions (ufuncs).

                 

       



5
Working with Matrices and ufuncs

This chapter covers matrices and universal functions (ufuncs). Matrices 
are well known in mathematics and have their representation in NumPy as 
well. Universal functions work on arrays, element-by-element, or on scalars. 
ufuncs expect a set of scalars as input and produce a set of scalars as output. 
Universal functions can typically be mapped to mathematical counterparts, 
such as, add, subtract, divide, multiply, and so on. We will also be introduced to 
trigonometric, bitwise, and comparison universal functions.

In this chapter, we shall cover the following topics:

 � Matrix creation

 � Matrix operations

 � Basic ufuncs

 � Trigonometric functions

 � Bitwise functions

 � Comparison functions

Matrices
Matrices in NumPy are subclasses of ndarray. Matrices can be created using a special string 
format. They are, just like in mathematics, two-dimensional. Matrix multiplication is, as you 
would expect, different from the normal NumPy multiplication. The same is true for the 
power operator. We can create matrices with the mat, matrix, and bmat functions.
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Time for action – creating matrices
Matrices can be created with the mat function. This function does not make a copy if the 
input is already a matrix or an ndarray. Calling this function is equivalent to calling 
matrix(data, copy=False). We will also demonstrate transposing and inverting matrices.

1. Creating a matrix from a string: Rows are delimited by a semicolon, values by a 
space. Call the mat function with the following string to create a matrix:

A = numpy.mat('1 2 3; 4 5 6; 7 8 9')
print "Creation from string", A

The matrix output should be the following matrix:

Creation from string [[1 2 3]
 [4 5 6]
 [7 8 9]]

2. Transposing matrices: Transpose the matrix with the T attribute, as follows:

print "transpose A", A.T

The following is the transposed matrix:

transpose A [[1 4 7]
 [2 5 8]
 [3 6 9]]

3. Inverting matrices: The matrix can be inverted with the I attribute, as follows:

print "Inverse A", A.I

The inverse matrix is as follows (be warned that this is a O(n^3) operation):

Inverse A [[ -4.50359963e+15   9.00719925e+15  -4.50359963e+15]
 [  9.00719925e+15  -1.80143985e+16   9.00719925e+15]
 [ -4.50359963e+15   9.00719925e+15  -4.50359963e+15]]

4. Creating matrices from arrays: Instead of using a string to create a matrix, let's do it 
with an array:

print "Creation from array", numpy.mat(numpy.arange(9).reshape(3, 
3))

The newly-created array is as follows:

Creation from array [[0 1 2]
 [3 4 5]
 [6 7 8]]
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What just happened?
We created matrices with the mat function. We transposed the matrices with the T attribute 
and inverted them with the I attribute.

Creating a matrix from other matrices
Sometimes we want to create a matrix from other smaller matrices. We can do this with the 
bmat function. The b here stands for block matrix.

Time for action – creating a matrix from other matrices
We will create a matrix from two smaller matrices, as follows:

1. Creating the smaller matrices: First create a 2-by-2 identity matrix:

A = numpy.eye(2)
print "A", A

The identity matrix looks like this:

A [[ 1.  0.]
 [ 0.  1.]]

Create another matrix like A and multiply by 2:

B = 2 * A
print "B", B

The second matrix is as follows:

B [[ 2.  0.]
 [ 0.  2.]]

2. Creating the compound matrix: Create the compound matrix from a string. The 
string uses the same format as the mat function; only, you can use matrices instead 
of numbers.

print "Compound matrix\n", numpy.bmat("A B; A B")

The compound matrix is shown as follows:

Compound matrix
[[ 1.  0.  2.  0.]
 [ 0.  1.  0.  2.]
 [ 1.  0.  2.  0.]
 [ 0.  1.  0.  2.]]
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What just happened?
We created a block matrix from two smaller matrices, with the bmat function. We gave the 
function a string containing the names of matrices instead of numbers.

Pop quiz – defining a matrix with a string
1. What is the row delimiter in a string accepted by the mat and bmat functions?

a. Semicolon

b. Colon

c. Comma

d. Space

Universal functions
Ufuncs expect a set of scalars as input and produce a set of scalars as output. Universal 
functions can typically be mapped to mathematical counterparts, such as, add, subtract, 
divide, multiply, and so on.

Time for action – creating universal function
We can create a universal function from a Python function with the NumPy frompyfunc 
function, as follows:

1. Defining the Python function: Define a Python function that answers the ultimate 
question to the universe, existence, and the rest (it's from a book, if you don't know 
which one, you can safely ignore this).

def ultimate_answer(a):

So far, nothing special; we gave the function the name ultimate_answer and 
defined one parameter, a.

2. Initializing the result: Create a result consisting of all zeros, that has the same shape 
as a, with the zeros_like function:

result = numpy.zeros_like(a)

3. Complete the function: Now set the elements of the initialized array to the answer 
42 and return the result. The complete function should appear as shown, in the 
following code snippet. The flat attribute gives us access to a flat iterator that 
allows us to set the value of the array:
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def ultimate_answer(a):
   result = numpy.zeros_like(a)
   result.flat = 42
   return result

4. Create the universal function: Create a universal function with frompyfunc; 
specify 1 as input and 1 as output:

ufunc = numpy.frompyfunc(ultimate_answer, 1, 1) 
print "The answer", ufunc(numpy.arange(4))

The result for a one-dimensional array is shown as follows:

The answer [42 42 42 42]

We can do the same for a two-dimensional array by using the following code:

print "The answer", ufunc(numpy.arange(4).reshape(2, 2))

The output for a two dimensional array is shown as follows

The answer [[42 42]
[[42 42]
[42 42]]

What just happened?
We defined a Python function. In this function, we initialized to zero the elements of an 
array, based on the shape of an input argument, with the zeros_like function. Then, with 
the flat attribute of ndarray, we set the array elements to the ultimate answer, 42.

Universal function methods
How can functions have methods? As we said earlier, universal functions are not functions 
but objects representing functions. Universal functions have four methods. They only make 
sense for functions such as add. That is, they have two input parameters and return one 
output parameter. If the signature of a ufunc does not match this condition, this will result in 
a ValueError, so call this method only for binary universal functions. The four methods are 
listed as follows:

1. reduce

2. accumulate

3. reduceat

4. outer
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Time for action – applying the ufunc methods on add
Let's call the four methods on add.

1. Calling the reduce method: The input array is reduced by applying the universal 
function recursively along a specified axis on consecutive elements. For the add 
function, the result of reducing is similar to calculating the sum of an array. Call the 
reduce method:

a = numpy.arange(9)
print "Reduce", numpy.add.reduce(a)

The reduced array should be as follows:

Reduce 36

2. Calling the accumulate method: The accumulate method also recursively 
goes through the input array. But, contrary to the reduce method, it stores the 
intermediate results in an array and returns that. The result, in the case of the add 
function, is equivalent to calling the cumsum function. Call the accumulate method 
on the add function:

print "Accumulate", numpy.add.accumulate(a)

The accumulated array:

Accumulate [ 0  1  3  6 10 15 21 28 36]

3. Calling the reduceat method: The reduceat method is a bit complicated to explain, 
so let's call it and go through its algorithm, step-by-step. The reduceat method 
requires as arguments an input array and a list of indices:

print "Reduceat", numpy.add.reduceat(a, [0, 5, 2, 7])

The result is shown as follows:

Reduceat [10  5 20 15]

The first step concerns the indices 0 and 5. This step results in a reduce operation of 
the array elements between indices 0 and 5.

print "Reduceat step I", numpy.add.reduce(a[0:5])

The output of step 1 is as follows:

Reduceat step I 10

The second step concerns indices 5 and 2. Since 2 is less than 5, the array element 
at index 5 is returned:

print "Reduceat step II", a[5]
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The second step results in the following output:

Reduceat step II 5

The third step concerns indices 2 and 7. This step results in a reduce operation of 
the array elements between indices 2 and 7:

print "Reduceat step III", numpy.add.reduce(a[2:7])

The result of the third step is shown as follows:

Reduceat step III 20

The fourth step concerns index 7. This step results in a reduce operation of the array 
elements from index 7 to the end of the array:

print "Reduceat step IV", numpy.add.reduce(a[7:])

The fourth step result is shown as follows:

Reduceat step IV 15

4. Calling the outer method: The outer method returns an array that has a rank which 
is the sum of the ranks of its two input arrays. The method is applied to all possible 
pairs of the input array elements. Call the outer method on the add function:

print "Outer", numpy.add.outer(numpy.arange(3), a)

The outer sum output result is as follows:

Outer [[ 0  1  2  3  4  5  6  7  8]
 [ 1  2  3  4  5  6  7  8  9]
 [ 2  3  4  5  6  7  8  9 10]]

What just happened?
We applied the four methods, reduce, accumulate, reduceat, and outer, of universal 
functions to the add function. Since this is a binary function, no exception was thrown.

Arithmetic functions
The common arithmetic operators +, -, and * are implicitly linked to the add, subtract, 
and multiply universal functions. This means that when you use one of those operators 
on a NumPy array, the corresponding universal function will get called. Division involves a 
slightly more complex process. There are three universal functions that have to do with array 
division: divide, true_divide, and floor_division. Two operators correspond to 
division: / and //.
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Time for action – dividing arrays
Let's see the array division in action:

1. Calling divide: The divide function does truncated integer division and normal 
floating-point division:

a = numpy.array([2, 6, 5])
b = numpy.array([1, 2, 3])
print "Divide", numpy.divide(a, b), numpy.divide(b, a)

The result of the divide function is shown as follows:

Divide [2 3 1] [0 0 0]

As you can see, big-time truncation takes place.

2. Calling true_divide: The true_divide function comes closer to the mathematical 
definition of division. Integer division returns a floating-point result and no 
truncation occurs:

print "True Divide", numpy.true_divide(a, b), numpy.true_divide(b, 
a)

The result of the true_divide function is as follows:

True Divide [ 2.          3.          1.66666667] [ 0.5         
0.33333333  0.6       ]

3. Calling floor_divide: The floor_divide function always returns an integer result. 
It is equivalent to calling the floor function after calling the divide function. The 
floor function discards the decimal part of a floating-point number and returns 
an integer:

print "Floor Divide", numpy.floor_divide(a, b), numpy.floor_
divide(b, a)
c = 3.14 * b
print "Floor Divide 2", numpy.floor_divide(c, b), numpy.floor_
divide(b, c)

The floor_divide function results in:

Floor Divide [2 3 1] [0 0 0]
Floor Divide 2 [ 3.  3.  3.] [ 0.  0.  0.]

4. Using the / operator: By default, the / operator is equivalent to calling the 
divide function:

from __future__ import division

However, if this line is found at the beginning of a Python program, the  
true_divide function is called instead. So, this code would appear as follows:

print "/ operator", a/b, b/a
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The result is shown as follows:

/ operator [ 2.          3.          1.66666667] [ 0.5         
0.33333333  0.6       ]

5. Using the // operator: The // operator is equivalent to calling the floor_divide 
function. For example, look at the following code snippet:

print "// operator", a//b, b//a
print "// operator 2", c//b, b//c

The // operator result is shown as follows:

// operator [2 3 1] [0 0 0]
// operator 2 [ 3.  3.  3.] [ 0.  0.  0.]

What just happened?
We found that there are three different NumPy division functions. The divide function 
truncates the integer division and normal floating-point division. The true_divide function 
always returns a floating-point result without any truncation. The floor_divide function 
always returns an integer result; the result is the same that you would get by calling the 
divide and floor functions consecutively.

Have a go hero – experimenting with __future__.division
Experiment to confirm the impact of importing __future__.division.

Modulo operation
The modulo or remainder can be calculated using the NumPy mod, remainder, and fmod 
functions. Also, one can use the % operator. The main difference among these functions is 
how they deal with negative numbers. The odd one out in this group is the fmod function.

Time for action – computing the modulo
Let's call the aforementioned functions:

1. Calling the remainder function: The remainder function returns the remainder of 
the two arrays, element-wise. 0 is returned if the second number is 0:

a = numpy.arange(-4, 4)
print "Remainder", numpy.remainder(a, 2)

The result of the remainder function is shown as follows:

Remainder [0 1 0 1 0 1 0 1]
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2. Calling the mod function: The mod function does exactly the same as the 
remainder function:

print "Mod", numpy.mod(a, 2)

The result of the mod function is shown as follows:

Mod [0 1 0 1 0 1 0 1]

3. Using the % operator: The % operator is just shorthand for the remainder function:

print "% operator", a % 2

The result of the % operator is shown as follows:

% operator [0 1 0 1 0 1 0 1]

4. Calling the fmod function: The fmod function handles negative numbers differently 
than mod, fmod, and % do. The sign of the remainder is the sign of the dividend, and 
the sign of the divisor has no influence on the results:

print "Fmod", numpy.fmod(a, 2)

The fmod result is shown as follows:

Fmod [ 0 -1  0 -1  0  1  0  1]

What just happened?
We demonstrated the NumPy mod, remainder, and fmod functions, which compute the 
modulo, or remainder.

Fibonacci numbers
The Fibonacci numbers are based on a recurrence relation. It is difficult to express this 
relation directly with NumPy code. However, we can express this relation in a matrix form 
or use the golden ratio formula. This will introduce the matrix and rint functions. The 
matrix function creates matrices and the rint function rounds numbers to the closest 
integer, but the result is not integer.

Time for action – computing Fibonacci numbers
The Fibonacci recurrence relation can be represented by a matrix. Calculation of Fibonacci 
numbers can be expressed as repeated matrix multiplication:

1. Creating the Fibonacci matrix: Create the Fibonacci matrix as follows:

F = numpy.matrix([[1, 1], [1, 0]])
print "F", F
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The Fibonacci matrix appears as follows:

F [[1 1]
 [1 0]]

2. Computing a Fibonacci number with the matrix: Calculate the 8th Fibonacci 
number (ignoring 0), by subtracting 1 from 8 and taking the power of the matrix. 
The Fibonacci number then appears on the diagonal:

print "8th Fibonacci", (F ** 7)[0, 0]

The Fibonacci number is:

8th Fibonacci 21

3. Calculating with the golden ratio formula: The golden ratio formula, better known 
as Binet's formula, allows us to calculate Fibonacci numbers with a rounding step at 
the end. Calculate the first eight Fibonacci numbers:

n = numpy.arange(1, 9)
sqrt5 = numpy.sqrt(5)
phi = (1 + sqrt5)/2
fibonacci = numpy.rint((phi**n - (-1/phi)**n)/sqrt5) 
print "Fibonacci", fibonacci

The Fibonacci numbers are: 

Fibonacci [  1.   1.   2.   3.   5.   8.  13.  21.]

What just happened?
We computed Fibonacci numbers in two ways. In the process, we learned about the matrix 
function that creates matrices. We also learned about the rint function that rounds 
numbers to the closest integer but does not change the type to integer.

Have a go hero – timing the calculations
You are probably wondering which approach is faster, so go ahead time it. Create a universal 
Fibonacci function with frompyfunc and time it too.

Lissajous curves
All the standard trigonometric functions, such as, sin, cos, tan, and so on are represented 
by universal functions in NumPy. Lissajous curves are a fun way of using trigonometry. I 
remember producing Lissajous figures on an oscilloscope in the physics lab. Two parametric 
equations can describe the figures:

x = A sin(at + π/2)
y = B sin(bt)
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Time for action – drawing Lissajous curves
The Lissajous figures are determined by four parameters A, B, a, and b. Let's set A and B to 1 
for simplicity:

1. Initialize t: Initialize t with the linspace function from -pi to pi with 201 points:

a = float(sys.argv[1])
b = float(sys.argv[2])
t = numpy.linspace(-numpy.pi, numpy.pi, 201)

2. Calculate x: Calculate x with the sin function and numpy.pi:

x = numpy.sin(a * t + numpy.pi/2)

3. Calculate y: Calculate y with the sin function:

y = numpy.sin(b * t)

4. Plot with Matplotlib: Matplotlib will be covered later in Chapter 9, Plotting with 
Matplotlib. Plot as shown here:

plot(x, y)
show()

The result for a = 9 and b = 8:
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What just happened?
We plotted the Lissajous curve with the aforementioned parametric equations where A=B=1, 
a=9 and, b=8. We used the sin and linspace functions as well as the NumPy pi constant.

Square waves
Square waves are also one of those neat things that you can view on an oscilloscope. They 
can be approximated pretty well with sine waves; after all, a square wave is a signal that can 
be represented by an infinite Fourier series. The formula of the series is as follows:

4sin((2k 1)t)

(2k 1)
k = 1

Time for action – drawing a square wave
We will initialize t just like in the previous tutorial. We need to sum a number of terms. The 
higher the number of terms, the more accurate the result; k = 99 should be sufficient. In 
order to draw a square wave, follow the ensuing steps:

1. Initialize t and k: We will start by initializing t and k. Set initial values for the 
function to 0:

t = numpy.linspace(-numpy.pi, numpy.pi, 201)
k = numpy.arange(1, float(sys.argv[1]))
k = 2 * k - 1
f = numpy.zeros_like(t)

2. Compute the function values: This step should be a straightforward application of 
the sin and sum functions:

for i in range(len(t)):
   f[i] = numpy.sum(numpy.sin(k * t[i])/k)
f = (4 / numpy.pi) * f

3. Plotting with Matplotlib: The code to plot is almost identical to the one in the 
previous tutorial:

plot(t, f)
show()
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The resulting square wave generated with k = 99 is as follows:

What just happened?
We generated a square wave or, at least, a fair approximation of it, using the sin 
function. The input values were assembled with linspace and the k values with the 
arange function.

Have a go hero – getting rid of the loop
You may have noticed that there is one loop in the code. Get rid of it with NumPy functions 
and make sure the performance is also improved.

Sawtooth and triangle waves
Sawtooth and triangle waves are also a phenomenon easily viewed on an oscilloscope. Just 
like with square waves, we can define an infinite Fourier series. The triangle waves can be 
found by taking the absolute value of a sawtooth wave. The formula for the representation 
of a series of sawtooth waves is:

k = 1

2sin(2 )kt

k
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Time for action – drawing sawtooth and triangle waves
We will initialize t just like in the previous tutorial. Again, k = 99 should be sufficient. In 
order to draw sawtooth and triangle waves, follow the ensuing steps:

1. Initialize t and k: Set initial values for the function to zero:

t = numpy.linspace(-numpy.pi, numpy.pi, 201)
k = numpy.arange(1, float(sys.argv[1]))
f = numpy.zeros_like(t)

Compute the function values: This should again be a straightforward application 
of the sin and sum functions:

for i in range(len(t)):
   f[i] = numpy.sum(numpy.sin(2 * numpy.pi * k * t[i])/k)
f = (-2 / numpy.pi) * f

2. Plotting with Matplotlib: It's easy to plot the sawtooth and triangle waves, since the 
value of the triangle wave should be equal to the absolute value of the sawtooth 
wave. Plot the waves as shown next:

plot(t, f, lw=1.0)
plot(t, numpy.abs(f), lw=2.0)
show()

In the following figure, the triangle wave is the one with the thicker line:
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What just happened?
We drew a sawtooth wave using the sin function. The input values were assembled with 
linspace and the k values with the arange function. A triangle wave was derived from 
the sawtooth wave by taking the absolute value.

Have a go hero – getting rid of the loop
Your challenge, should you choose to accept it, is to get rid of the loop in the program. It 
should be doable with NumPy functions and the performance should double.

Bitwise and comparison functions
Bitwise functions operate on the bits of integers or integer arrays, since they are universal 
functions. The operators ^, &, |, <<, >>, and so on, have their NumPy counterparts The same 
goes for comparison operators, such as, <, >, ==, and so on. These operators allow you some 
clever tricks, which should be good for performance; however, they could make your code 
quite unreadable, so use them with care.

Time for action – twiddling bits
We will go over three tricks—checking whether the signs of integers are different, 
checking whether a number is a power of 2, and calculating the modulus of a number that 
is a power of 2. We will show an operators only notation and one using the corresponding 
NumPy functions:

1. Checking signs: The first trick depends on the XOR or ^ operator. The XOR operator is 
also called the inequality operator; so, if the sign bit of the two operands is different, 
the XOR operation will lead to a negative number. ^ corresponds to the bitwise_
xor function. < corresponds to the less function.

x = numpy.arange(-9, 9)
y = -x
print "Sign different?", (x ^ y) < 0
print "Sign different?", numpy.less(numpy.bitwise_xor(x, y), 0)

The result is shown as follows:

Sign different? [ True  True  True  True  True  True  True  True  
True False  True  True
  True  True  True  True  True  True]
Sign different? [ True  True  True  True  True  True  True  True  
True False  True  True
  True  True  True  True  True  True]

As expected, all the signs differ, except for zero.
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2. 'Power of 2' check: A power of 2 is represented by a 1, followed by a series of 
trailing zeroes in binary notation. For instance, 10, 100, or 1000. A number one less 
than a power of 2 would be represented by a row of ones in binary. For instance, 
11, 111, or 1111 (or 3, 7, and 15, in the decimal system). Now, if we bitwise AND 
a power of 2, and the integer that is one less than that, then we should get 0. The 
NumPy counterpart of & is bitwise_and; the counterpart of == is the equal 
universal function.

print "Power of 2?\n", x, "\n", (x & (x - 1)) == 0
print "Power of 2?\n", x, "\n", numpy.equal(numpy.bitwise_and(x,   
  (x - 1)), 0)

The result is shown as follows:

Power of 2?
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8] 
[False False False False False False False False False  True  True  
True
 False  True False False False  True]
Power of 2?
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8] 
[False False False False False False False False False  True  True  
True
 False  True False False False  True]

3. Computing the modulus of 4: This trick actually works when taking the modulus 
of integers that are a power of 2, such as, 4, 8, 16, and so on. A bitwise left shift 
leads to doubling of values. We saw in the previous step that subtracting one from 
a power of 2 leads to a number in binary notation that has a row of ones, such as, 
11, 111, or 1111. This basically gives us a mask. Bitwise-ANDing with such a number 
gives you the remainder with a power of 2. The NumPy equivalent of << is the 
left_shift universal function.

print "Modulus 4\n", x, "\n", x & ((1 << 2) - 1)
print "Modulus 4\n", x, "\n", numpy.bitwise_and(x,  
  numpy.left_shift(1, 2) - 1)

The result is shown as follows:

Modulus 4
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8] 
[3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0]
Modulus 4
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8] 
[3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0]
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What just happened?
We covered three bit-twiddling hacks—checking whether the signs of integers are different, 
checking whether a number is a power of 2, and calculating the modulus of a number that is 
a power of 2. We saw the NumPy counterparts of the operators ^, &, <<, and <.

Summary
We learned, in this chapter, about matrices and universal functions. We covered how to 
create matrices and how universal functions work. We had a brief introduction to arithmetic, 
trigonometric, bitwise, and comparison universal functions.

In the next chapter, we shall cover NumPy modules.
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Move Further with NumPy Modules

NumPy has a number of modules that have been inherited from its predecessor, 
Numeric . Some of these packages have a SciPy counterpart, which may have 
fuller functionality. This will be discussed in a later chapter. The numpy.dual 
package contains functions that are defined both in NumPy and SciPy. The 
packages discussed in this chapter are also part of the numpy.dual package.

In this chapter, we shall cover the following topics:

 � The linalg package

 � The fft package

 � Random numbers

 � Continuous and discrete distributions

Linear algebra
The numpy.linalg package contains linear algebra functions. With this module, you can 
invert matrices, calculate eigenvalues, solve linear equations, and determine determinants 
among other things.

Time for action – inverting matrices
The inverse of a matrix A in linear algebra is the matrix A-1, which, when multiplied with the 
original matrix, is equal to the identity matrix I. This can be written as follows:

A A-1 = I
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The inv function in the numpy.linalg package can do this for us. Let's invert an example 
matrix. To invert matrices, follow the ensuing steps:

1. Create the example matrix: We will create the example matrix with the mat 
function that we used in previous chapters.

A = numpy.mat("0 1 2;1 0 3;4 -3 8")
print "A\n", A

The A matrix is shown as follows:

A
[[ 0  1  2]
 [ 1  0  3]
 [ 4 -3  8]]

2. Invert the matrix: Now, we can see the inv function in action.

inverse = numpy.linalg.inv(A)
print "inverse of A\n", inverse

The inverse matrix is shown as follows:

inverse of A
[[-4.5  7.  -1.5]
 [-2.   4.  -1. ]
 [ 1.5 -2.   0.5]]

If the matrix is singular, or not square, a LinAlgError is raised. If you want, you 
can check the result manually. This is left as an exercise for the reader.

3. Check by multiplication: Let's check what we get when we multiply the original 
matrix with the result of the inv function:

print "Check\n", A * inverse

The result is the identity matrix, as expected.

Check
[[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]

What just happened?
We calculated the inverse of a matrix with the inv function of the numpy.linalg package. 
We checked, with matrix multiplication, whether this is indeed the inverse matrix.
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Pop quiz – creating a matrix
1. Which function can create matrices?

a. array

b. create_matrix

c. mat

d. vector

Have a go hero – inverting your own matrix
Create your own matrix and invert it. The inverse is only defined for square matrices. The 
matrix must be square and invertible; otherwise, a LinAlgError exception is raised.

Solving linear systems
The numpy.linalg function solve solves systems of linear equations of the form Ax = b; 
here A is a matrix, b can be 1D or 2D array, and x is an unknown variable. We will see the 
dot function in action. This function returns the dot product of two floating-point arrays.

Time for action – solving a linear system
Let's solve an example of linear system. To solve a linear system, follow the ensuing steps:

1. Create the matrices A and b: Let's create A and b:

A = numpy.mat("1 -2 1;0 2 -8;-4 5 9")
print "A\n", A
b = numpy.array([0, 8, -9])
print "b\n", b

The matrices A and b are shown as follows:

A
[[ 1 -2  1]
 [ 0  2 -8]
 [-4  5  9]]
b [ 0  8 -9]

2. Call the solve function: Solve this linear system with the solve function:

x = numpy.linalg.solve(A, b)
print "Solution", x

The solution of the linear system is as follows:

Solution [ 29.  16.   3.]

                 

       



Move Further with NumPy Modules

[ 120 ]

3. Check with the dot function:  Check whether the solution is correct with the dot 
function:

print "Check\n", numpy.dot(A , x)

The result is as expected:

Check
[[ 0.  8. -9.]]

What just happened?
We solved a linear system using the solve function from the NumPy linalg module and 
checked the solution with the dot function.

Finding eigenvalues and eigenvectors
Eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-dimensional 
matrix and x is a one-dimensional vector. Eigenvectors are vectors corresponding to 
eigenvalues. The eigvals function in the numpy.linalg package calculates eigenvalues. 
The eig function returns a tuple containing eigenvalues and eigenvectors.

Time for action – determining eigenvalues and eigenvectors
Let's calculate the eigenvalues of a matrix:

1. Create the matrix: Create a matrix as shown.

A = numpy.mat("3 -2;1 0")
print "A\n", A

The matrix we created looks like this:

A
[[ 3 -2]
 [ 1  0]]

2. Calculate eigenvalues with the eig function: Call the eig function.

print "Eigenvalues", numpy.linalg.eigvals(A)

The eigenvalues of the matrix are as follows:

Eigenvalues [ 2.  1.]

3. Getting eigenvalues and eigenvectors with eig: Determine eigenvalues and 
eigenvectors with the eig function. This function returns a tuple, where the first 
element contains eigenvalues and the second element contains corresponding 
eigenvectors, arranged column-wise.
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eigenvalues, eigenvectors = numpy.linalg.eig(A)
print "First tuple of eig", eigenvalues
print "Second tuple of eig\n", eigenvectors

The eigenvalues and eigenvectors will be:

First tuple of eig [ 2.  1.]
Second tuple of eig
[[ 0.89442719  0.70710678]
 [ 0.4472136   0.70710678]]

4. Check the result: Check the result with the dot function by calculating the right and 
left side of the eigenvalues equation Ax = ax.

for i in range(len(eigenvalues)):
   print "Left", numpy.dot(A, eigenvectors[:,i])
   print "Right", eigenvalues[i] * eigenvectors[:,i]
   print

The output is as follows:

Left [[ 1.78885438]
 [ 0.89442719]]
Right [[ 1.78885438]
 [ 0.89442719]]
Left [[ 0.70710678]
 [ 0.70710678]]
Right [[ 0.70710678]
 [ 0.70710678]]

What just happened?
We found the eigenvalues and eigenvectors of a matrix with the eigvals and eig functions 
of the numpy.linalg module. We checked the result using the dot function.

Singular value decomposition
Singular value decomposition is a type of factorization that decomposes a matrix into a 
product of three matrices. The svd function in the numpy.linalg package can perform this 
decomposition. This function returns two orthogonal matrices and the singular values of the 
middle matrix:

vU *=M
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Time for action – decomposing a matrix
It's time to decompose a matrix with the singular value decomposition. In order to 
decompose a matrix, follow the ensuing steps:

1. Create a matrix: First, create a matrix as shown.

A = numpy.mat("4 11 14;8 7 -2")
print "A\n", A

The matrix we created looks like this:

A
[[ 4 11 14]
 [ 8  7 -2]]

2. Decompose the matrix: Decompose the matrix with the svd function.

U, Sigma, V = numpy.linalg.svd(A, full_matrices=False)
print "U"
print U
print "Sigma"
print Sigma
print "V"
print V

The result is a tuple containing the two orthogonal matrices U and V on the left and 
right and the singular values of the middle matrix.

U
[[-0.9486833  -0.31622777]
 [-0.31622777  0.9486833 ]]
Sigma
[ 18.97366596   9.48683298]
V
[[-0.33333333 -0.66666667 -0.66666667]
 [ 0.66666667  0.33333333 -0.66666667]] 

3. Check the decomposition by matrix multiplication: We do not actually have the 
middle matrix—we only have the diagonal values. The other values are all 0. We can 
form the middle matrix with the diag function. Multiply the three matrices. This is 
shown as follows:

print "Product\n", U * numpy.diag(Sigma) * V

The product of the three matrices looks like this:

Product
[[  4.  11.  14.]
 [  8.   7.  -2.]]
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What just happened?
We decomposed a matrix and checked the result by matrix multiplication. We used the svd 
function from the NumPy linalg module.

Pseudo inverse
The Moore-Penrose pseudo inverse of a matrix can be computed with the pinv 
function of the numpy.linalg module (see http://en.wikipedia.org/wiki/
Moore%E2%80%93Penrose_pseudoinverse). The pseudo inverse is calculated using its 
singular value decomposition. The inv function only accepts square matrices; the pinv 
function does not have this restriction.

Time for action – computing the pseudo inverse of a matrix
Let's compute the pseudo inverse of a matrix:

1. Create a matrix: First, create a matrix as shown.

A = numpy.mat("4 11 14;8 7 -2")
print "A\n", A

The matrix we created looks like this:

A
[[ 4 11 14]
 [ 8  7 -2]]

2. Compute the pseudo inverse: Calculate the pseudo inverse matrix with the pinv 
function as shown.

pseudoinv = numpy.linalg.pinv(A)
print "Pseudo inverse\n", pseudoinv

The pseudo inverse is as follows:

Pseudo inverse
[[-0.00555556  0.07222222]
 [ 0.02222222  0.04444444]
 [ 0.05555556 -0.05555556]]

3. Multiply the matrices: Multiply the original and pseudo inverse matrices.

print "Check", A * pseudoinv

What we get is not an identity matrix, but it comes close to it:

Check [[  1.00000000e+00   0.00000000e+00]
 [  8.32667268e-17   1.00000000e+00]]
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What just happened?
We computed the pseudo inverse of a matrix with the pinv function of the numpy.linalg 
module. The check by matrix multiplication resulted in a matrix that is approximately an 
identity matrix.

Determinants
The determinant is a value associated with a matrix. It is used throughout mathematics. The 
numpy.linalg module has a det function that returns the determinant of a matrix.

Time for action – calculating the determinant of a matrix
To calculate the determinant of a matrix, follow the ensuing steps:

1. Create a matrix: Create the matrix as shown:

A = numpy.mat("3 4;5 6")
print "A\n", A

The matrix we created is shown as follows:

A
[[ 3.  4.]
 [ 5.  6.]]

2. Determine the determinant: Compute the determinant with the det function:

print "Determinant", numpy.linalg.det(A)

The determinant is shown as follows:

Determinant -2.0

What just happened?
We calculated the determinant of a matrix with the det function from the numpy.linalg 
module.

Fast Fourier transform
NumPy has a module called fft that offers fast Fourier transform functionality. A lot of the 
functions in this module are paired; this means that, for many functions, there is a function 
that does the inverse operation. For instance, the fft and ifft function.
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Time for action – calculating the Fourier transform
First, we will create a signal to transform. In order to calculate the Fourier transform, follow 
the ensuing steps:

1. Create the input signal: Create a cosine wave with 30 points, as follows.

x =  numpy.linspace(0, 2 * numpy.pi, 30)
wave = numpy.cos(x)

2. Transform the signal: Transform the cosine wave with the fft function.

transformed = numpy.fft.fft(wave)

3. Apply the inverse transform: Apply the inverse transform with the ifft function. It 
should approximately return the original signal.

print numpy.all(numpy.abs(numpy.fft.ifft(transformed) - wave) < 10 
** -9)

The result is shown as follows:

True

4. Plot the transform: Plot the transformed signal with Matplotlib:

plot(transformed)
show()

The resulting diagram shows the fast Fourier Transform:
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What just happened?
We applied the fft function to a cosine wave. After applying the ifft function, we got our 
signal back.

Shifting
The fftshift function of the numpy.linalg module shifts zero-frequency components to 
the center of a spectrum. The ifftshift function reverses this operation.

Time for action – shifting frequencies
We will create a signal, transform it, and then shift the signal. In order to shift the 
frequencies, follow the ensuing steps:

1. Create the input signal: Create a cosine wave with 30 points.

x =  numpy.linspace(0, 2 * numpy.pi, 30)
wave = numpy.cos(x)

2. Transform the signal: Transform the cosine wave with the fft function.

transformed = numpy.fft.fft(wave)

3. Shift the signal: Shift the signal with the fftshift function.

shifted = numpy.fft.fftshift(transformed)

4. Reverse the shift: Reverse the shift with the ifftshift function. This should undo 
the shift.

print numpy.all((numpy.fft.ifftshift(shifted) - transformed) < 10 
** -9)

The result is shown as follows: 

True

5. Plot: Plot the signal and transform it with Matplotlib.

plot(transformed, lw=2)
plot(shifted, lw=3)
show()
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The following diagram shows the shift in the fast Fourier transform:

What just happened?
We applied the fftshift function to a cosine wave. After applying the ifftshift 
function, we got our signal back.

Random numbers
The random numbers related functions can be found in the NumPy random module. The 
core random number generator is based on the Mersenne Twister algorithm. Random 
numbers can be generated from discrete or continuous distributions. The distribution 
functions have an optional size parameter, which tells NumPy how many numbers to 
generate. You can specify either an integer or a tuple as size. This will result in an array filled 
with random numbers of appropriate shape. Discrete distributions include the geometric, 
hypergeometric, and binomial distributions.

Time for action – gambling with the binomial
The binomial distribution models the number of successes in an integer number of 
independent trials of an experiment, where the probability of success in each experiment 
is a fixed number. Imagine a 17th-century gambling house where you can bet on flipping of 
pieces of eight. Nine coins are flipped. If less than five are heads, then you lose one piece of 
eight, otherwise you win one. Let's simulate this, starting with 1000 coins in our possession. 
We will use the binomial function from the random module for that purpose. 
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In order to understand the binomial function, look at the following section:

1. Calling the binomial function: Initialize an array, which represents the cash balance, 
to zeros. Call the binomial function with a size of 10000. This represents 10000 
coin flips in our casino.

cash = numpy.zeros(10000)
cash[0] = 1000
outcome = numpy.random.binomial(9, 0.5, size=len(cash))

2. Updating the cash balance: Go through the outcomes of the coin flips and update 
the cash array. Print the minimum and maximum of the outcome, just to make sure 
we don't have any strange outliers.

for i in range(1, len(cash)):
   if outcome[i] < 5:
      cash[i] = cash[i - 1] - 1
   elif outcome[i] < 10:
      cash[i] = cash[i - 1] + 1
   else:
      raise AssertionError("Unexpected outcome " + outcome)
print outcome.min(), outcome.max()

As expected, the values are between 0 and 9:

0 9

3. Plot: Plot the cash array with Matplotlib:

plot(numpy.arange(len(cash)), cash)
show()

As you can see in the following diagram, our cash balance performs a random walk:
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What just happened?
We did a random walk experiment using the binomial function from the NumPy 
random module.

Hypergeometric distribution
The hypergeometric distribution models a jar with two types of objects in it. The model 
tells us how many objects of one type we can get if we take a specified number of items out 
of the jar without replacing them. The NumPy random module has a hypergeometric 
function that simulates this situation.

Time for action – simulating a game show
Imagine a game show where every time the contestants answer a question correctly, they 
get to pull three balls from a jar and then put them back. Now there is a catch, there is one 
ball in there that is bad. Every time it is pulled out the contestants lose six points. If however, 
they manage to get out three of the twenty-five normal balls, they get one point. So, what is 
going to happen if we have a 100 questions in total? In order to get a solution for this, look at 
the following section:

1. Initialize the outcomes of the game: Initialize the outcome of the game with the 
hypergeometric function.

points = numpy.zeros(100)
outcomes = numpy.random.hypergeometric(25, 1, 3, size=len(points))

2. Simulate the game: Set the scores based on the outcomes from the previous step.

for i in range(len(points)):
   if outcomes[i] == 3:
      points[i] = points[i - 1] + 1
   elif outcomes[i] == 2:
      points[i] = points[i - 1] - 6
   else:
      print outcomes[i]

3. Plot the points: Plot the points array with Matplotlib.

plot(numpy.arange(len(points)), points)
show()
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The following diagram shows how the scoring evolved:

What just happened?
We simulated a game show using the hypergeometric function from the NumPy random 
module. The game scoring depends on how many good and how many bad balls are pulled 
out of a jar in each session.

Continuous distributions
Continuous distributions are modeled by the probability density functions (pdf). The 
probability for a certain interval is determined by integration of the probability density 
function. The NumPy random module has a number of functions that represent 
continuous distributions—beta, chisquare, exponential, f, gamma, gumbel, 
laplace, lognormal, logistic, multivariate_normal, noncentral_chisquare, 
noncentral_f, normal, and others.

Time for action – drawing a normal distribution
Random numbers can be generated from a normal distribution and their distribution may be 
visualized with a histogram. To draw a normal distribution, follow the ensuing steps:

1. Generate values: Generate random numbers using the normal function from the 
random NumPy module.

N=10000
normnal_values = numpy.random.normal(size=N)
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2. Draw the histogram and theoretical pdf: Draw the histogram and theoretical pdf 
with a center value of 0 and standard deviation of 1. We will use Matplotlib for 
this purpose.

dummy, bins, dummy = matplotlib.pyplot.hist(normal_values,  
  numpy.sqrt(N), normed=True, lw=1)
sigma = 1
mu = 0
matplotlib.pyplot.plot(bins, 1/(sigma * numpy.sqrt(2 * numpy.pi))  
  * numpy.exp( - (bins - mu)**2 / (2 * sigma**2) ),lw=2)
matplotlib.pyplot.show() 

In the following diagram, we see the familiar bell curve:

What just happened?
We visualized the normal distribution using the normal function from the random NumPy 
module. We did this by drawing the bell curve and a histogram of randomly-generated values.

Lognormal distribution
A lognormal distribution is a distribution of a variable whose natural logarithm is 
normally distributed. The lognormal function of the random NumPy module models 
this distribution.
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Time for action – drawing the lognormal distribution
Let's visualize the lognormal distribution and its probability density function with 
a histogram:

1. Generate: Generate random numbers using the normal function from the random 
NumPy module.

N=10000
lognormal_values = numpy.random.lognormal(size=N)

2. Draw the histogram and theoretical pdf: Draw the histogram and theoretical pdf 
with a center value of 0 and standard deviation of 1. We will use Matplotlib for this 
purpose:

dummy, bins, dummy = matplotlib.pyplot.hist(lognormal_values,  
  numpy.sqrt(N), normed=True, lw=1)
sigma = 1
mu = 0
x = numpy.linspace(min(bins), max(bins), len(bins))
pdf = numpy.exp(-(numpy.log(x) - mu)**2 / (2 * sigma**2))/ (x *  
  sigma * numpy.sqrt(2 * numpy.pi))
matplotlib.pyplot.plot(x, pdf,lw=3)
matplotlib.pyplot.show()

The fit of the histogram and theoretical pdf is excellent, as you can see in the 
following diagram:
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What just happened?
We visualized the lognormal distribution using the lognormal function from the random 
NumPy module. We did this by drawing the curve of the theoretical probability 
density function and a histogram of randomly-generated values.

Summary
We learned a lot in this chapter about NumPy modules. We covered linear algebra, the Fast 
Fourier transform, continuous and discrete distributions, and random numbers.

In the next chapter, we shall cover specialized routines. These are functions that you 
probably would not use often, but are very useful when you do need them.

                 

       



                 

       



7
Peeking Into Special Routines

As NumPy users, we sometimes find ourselves having special needs. 
Fortunately, NumPy provides for most of our needs. This chapter describes 
some of the more specialized NumPy functions.

In this chapter we will cover the following topics:

 � Sorting and searching

 � Special functions

 � Financial utilities

 � Window functions

Sorting
NumPy has several sorting routines:

 � The sort function returns a sorted array

 � The lexsort function performs sorting with a list of keys

 � The argsort function returns the indices that would sort an array

 � The ndarray class has a sort method that performs in place sorting

 � The msort function sorts an array along the first axis

 � The sort_complex function sorts complex numbers by their real part and then 
their imaginary part
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Time for action – sorting lexically
The NumPy lexsort function returns an array of indices corresponding to lexically sorting 
an array. We need to give the function an array or tuple of sort keys:

1. Loading the data: Now for something completely different. Let's go back to 
Chapter 3, Get into Terms with Commonly Used Functions. In that chapter we used 
stock price data of AAPL. This is by now pretty old data. We will load the close prices  
and the always complex dates. In fact, we will need a converter function just for  
the dates:

def datestr2num(s):
   return datetime.datetime.strptime(s, "%d-%m-%Y").toordinal()

dates,closes=numpy.loadtxt('AAPL.csv', delimiter=',',
  usecols=(1, 6), converters={1:datestr2num}, unpack=True)

2. Sorting lexically: Sort the names lexically with the lexsort function. The data is 
already sorted by date, but we will now sort it by close as well:

indices = numpy.lexsort((dates, closes))

print "Indices", indices
print ["%s %s" % (datetime.date.fromordinal(dates[i]),
  closes[i]) for i in indices]

The code prints:

['2011-01-28 336.1', '2011-02-22 338.61', '2011-01-31 339.32', 
'2011-02-23 342.62', '2011-02-24 342.88', '2011-02-03 343.44', 
'2011-02-02 344.32', '2011-02-01 345.03', '2011-02-04 346.5', 
'2011-03-10 346.67', '2011-02-25 348.16', '2011-03-01 349.31', 
'2011-02-18 350.56', '2011-02-07 351.88', '2011-03-11 351.99', 
'2011-03-02 352.12', '2011-03-09 352.47', '2011-02-28 353.21', 
'2011-02-10 354.54', '2011-02-08 355.2', '2011-03-07 355.36', 
'2011-03-08 355.76', '2011-02-11 356.85', '2011-02-09 358.16', 
'2011-02-17 358.3', '2011-02-14 359.18', '2011-03-03 359.56', 
'2011-02-15 359.9', '2011-03-04 360.0', '2011-02-16 363.13']

What just happened?
We sorted the close prices of AAPL lexically using the NumPy lexsort function. The 
function returned the indices corresponding with sorting the array.

Have a go hero – trying a different sort order
We sorted using the dates, close price sort order. Try a different order. Generate random 
numbers using the random module we learned about in the previous chapter and sort those 
using lexsort.
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Complex numbers
Complex numbers are numbers that have a real and imaginary part. As you remember from 
previous chapters, NumPy has special complex datatypes that represent complex numbers 
by two floating point numbers. These numbers can be sorted using the NumPy sort_
complex function. This function sorts the real part first and then the imaginary part.

Time for action – sorting complex numbers
We will create an array of complex numbers and sort it:

1. Generating random complex numbers: Generate five random numbers for the 
real part of the complex numbers and five numbers for the imaginary part. Seed  
the random generator to 42:

numpy.random.seed(42)
complex_numbers = numpy.random.random(5) + 1j * numpy.random.
random(5)
print "Complex numbers\n", complex_numbers

2. Calling sort_complex on the random numbers: Call the sort_complex function to 
sort the complex numbers we generated in the previous step:

print "Sorted\n", numpy.sort_complex(complex_numbers)

The sorted numbers would be:

Sorted

[ 0.39342751+0.34955771j  0.40597665+0.77477433j  
0.41516850+0.26221878j

  0.86631422+0.74612422j  0.92293095+0.81335691j]

What just happened?
We generated random complex numbers and sorted them using the sort_complex function.

Pop quiz – generating random numbers
Which NumPy module deals with random numbers?

 � Randnum

 � random

 � randomutil

 � rand
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Searching
NumPy has several functions that can search through arrays:

 � The argmax function gives the indices of the maximum values of an array.

 � The nanargmax function does the same but ignores NaN values.

 � The argmin and nanargmin functions provide similar functionality but pertaining 
to minimum values.

 �  The argwhere function searches for non-zero values and returns the corresponding 
indices grouped by element.

 � The searchsorted function tells you the index in an array where a specified 
value could be inserted to maintain the sort order. It uses binary search, which  
is a O(log n) algorithm.

 � The extract function retrieves values from an array based on a condition.

Time for action – using searchsorted
The searchsorted function allows us to get the index of a value in a sorted array, where it 
could be inserted so that the array remains sorted. An example should make this clear:

1. Creating a sorted array: To demonstrate we will need an array that is sorted. Create 
an array with arange, which of course is sorted.

a = numpy.arange(5)

2. Calling searchsorted: Time to call the searchsorted function.

indices = numpy.searchsorted(a, [-2, 7])
print "Indices", indices

The indices that should maintain the sort order.

Indices [0 5]

3. Constructing the full array: Let's construct the full array with the insert function.

print "The full array", numpy.insert(a, indices, [-2, 7])

This gives us the full array:

The full array [-2  0  1  2  3  4  7]

What just happened?
The searchsorted function gave us indices 5 and 0 for 7 and -2. With these indices, we 
would make the array [-2, 0, 1, 2, 3, 4, 7]— so the array remains sorted.
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Array elements extraction
The NumPy extract function allows us to extract items from an array based on a condition.

Time for action – extracting elements from an array
Lets' extract the even elements from an array:

1. Create the array with the arange function:

a = numpy.arange(7)

2. Create the condition that selects the even elements:

condition = (a % 2) == 0

3. Extract the even elements based on our condition with the extract function:

print "Even numbers", numpy.extract(condition, a)

Giving us the even numbers as required:

Even numbers [0 2 4 6]

What just happened?
We extracted the even elements from an array based on a Boolean condition with the 
NumPy extract function.

Financial functions
NumPy has a number of financial utilities functions:

 � The fv function calculates the so called future value

 � The pv function computes the present value

 � The npv function returns the net present value

 � The pmt function computes the payment against loan principal plus interest

 � The irr function calculates the internal rate of return

 � The mirr function calculates the modified internal rate of return

 � The nper function returns the number of periodic payments

 � The rate function calculates the rate of interest
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Time for action – determining future value
The future value depends on four parameters—the interest rate, the number of periods, 
a periodic payment, and the present value. In this tutorial, let's take an interest rate of 3 
percent, quarterly payment of 10 for 5 years and present value of 1000:

1. Calculating the future value: Call the fv function with the appropriate values:

print "Future value", numpy.fv(0.03/4, 5 * 4, -10, -1000)

The future value is:

Future value 1376.09633204

What just happened?
We calculated the future value using the NumPy fv function starting with a present value of 
1000, interest rate of 3 percent and quarterly payments of 10 for 5 years.

Present value
The NumPy pv function can calculate the present value. This function mirrors the fv 
function and requires the interest rate, number of periods, and the periodic payment  
as well, but here we start with the future value.

Time for action – getting the present value
Let's reverse— compute the present value with numbers from the previous tutorial:

1. Calculating the present value: Plug in the figures from the previous Time for 
action tutorial.

print "Present value", numpy.pv(0.03/4, 5 * 4, -10, 1376.09633204)

This gives us 1000 as expected apart from a tiny numerical error. Actually it is not an 
error but a representation issue. We are dealing here with outgoing cash flow, that is 
the reason for the negative value:

Present value -999.999999999

What just happened?
We did the reverse computation of the previous Time for action tutorial to get the present 
value from the future value. This was done with the NumPy pv function.
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Net present value
The NumPy npv function returns the net present value of cash flows. The function requires 
two arguments, the rate and an array representing the cash flows.

Time for action – calculating the net present value
We will calculate the net present value for a random generated cash flow series:

1. Generate the random cash flow series: Generate five random values for the cash 
flow series. Insert -100 as start value.

cashflows = numpy.random.randint(100, size=5)
cashflows = numpy.insert(cashflows, 0, -100)
print "Cashflows", cashflows

The cash flows would be:

Cashflows [-100   38   48   90   17   36]

2. Calculating net present value: Call the npv function to calculate the net present 
value from the cash flow series we generated in the previous step. Use a rate of 3 
percent.

print "Net present value", numpy.npv(0.03, cashflows)

The net present value:

Net present value 107.435682443

What just happened?
We computed the net present value from a random generated cash flow series with the 
NumPy npv function.

Internal rate of return
The NumPy irr function returns the internal rate of return for a given cash flow series.
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Time for action – determining the internal rate of return
Let's reuse the cash flow series from the previous Time for action tutorial:

1. Calling the irr function: Call the irr function with the cash flow series from the 
previous Time for action tutorial:

print "Internal rate of return", numpy.irr([-100, 38, 48, 90,
  17, 36])

The internal rate of return:

Internal rate of return 0.373420226888

What just happened?
We calculated the internal rate of return from the cash flow series of the previous Time for 
action tutorial. The value was given by the NumPy irr function.

Periodic payments
The NumPy pmt function allows you to compute periodic payments for a loan based on an 
interest rate and the number of periodic payments.

Time for action – calculating the periodic payments
Suppose you have a loan of 1 million with interest rate of 10 percent. You have 30 years to 
pay the loan back. How much do you have to pay each month? Let's find out:

1. Call the pmt function with the values mentioned above:

print "Payment", numpy.pmt(0.01/12, 12 * 30, 10000000)

The monthly payment would be:

Payment -32163.9520447

What just happened?
We calculated the monthly payment for a loan of 1 million at an annual rate of 10 percent. 
Given that we have 30 years to repay the loan, the pmt function tells us that we need to pay 
32163.9520447 per month.
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Number of payments
The NumPy nper function tells us how many periodic payments are necessary to pay off a 
loan. The required parameters are the interest rate of the loan, the fixed amount periodic 
payment, and the present value.

Time for action – determining the number of periodic payments
Consider a loan of 9000 at a rate of 10 percent with fixed monthly payments of 100:

1. Getting the number of payments: Find out how many payments are required with 
the NumPy nper function:

print "Number of payments", numpy.nper(0.10/12, -100, 9000)

The number of payments would be:

Number of payments 167.047511801

What just happened?
We determined the number of payments needed to pay off a loan of 9000 with an interest rate 
of 10 percent and monthly payments of 100. The number of payments returned was 167.

Interest rate
The NumPy rate function calculates the interest rate given the number of periodic 
payments, the payment amount or amounts, the present value, and future value.

Time for action – figuring out the rate
Let's take the values from the previous Time for action tutorial and reverse compute the 
interest rate from the other parameters:

1. Determining the rate: Fill in the numbers from the previous Time for action tutorial:

print "Interest rate", 12 * numpy.rate(167, -100, 9000, 0)

The interest rate is approximately 10 percent as expected:

Interest rate 0.0999756420664
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What just happened?
We used the NumPy rate function and the values from the previous Time for action tutorial 
to compute the interest rate of the loan. Ignoring the rounding errors, we got the initial 10 
percent we started with.

Window functions
Window functions are mathematical functions commonly used in signal processing. These 
functions are defined to be 0 outside a specified domain. NumPy has a number of window 
functions: bartlett, blackman, hamming, hanning, and kaiser. An example of the 
hanning function can be found in Chapter 4, Convenience Functions for Your Convenience.

Time for action – plotting the Bartlett window
The Bartlett window is a triangular smoothing window:

1. Calculating the Bartlett window: Call the NumPy bartlett function:

window = numpy.bartlett(42)

2. Plotting the Bartlett window: Plotting is easy with Matplotlib:

plot(window)
show()

Here is the Bartlett window, which is triangular, as expected:
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What just happened?
We plotted the Bartlett window with the NumPy bartlett function.

Blackman window
The Blackman window is formed by summing the first three terms of cosines:

w( ) = 0.42-0.5cos(2 n/M)+0.08cos(4 n/M)n

The NumPy blackman function returns the Blackman window. The only parameter is the 
number of points in the output window. If this number is 0 or less than 0, an empty array  
is returned.

Time for action – smoothing stock prices with 
the Blackman window

Let's smooth the close prices from the small AAPL stock prices datafile:

1. Smoothing with the Blackman window: Load the data into a NumPy array. Call the 
NumPy blackman function to form a window and then use this window to smooth 
the price signal:

closes=numpy.loadtxt('AAPL.csv', delimiter=',', usecols=(6,), 
converters={1:datestr2num}, unpack=True)
N = int(sys.argv[1])
window = numpy.blackman(N)
smoothed = numpy.convolve(window/window.sum(),
  closes, mode='same')

2. Plotting the Blackman window: Plot the smoothed prices with Matplotlib. We 
will omit in this example the first five data points and the last five data points. The 
reason for this is that there is a strong boundary effect:

plot(smoothed[N:-N], lw=2, label="smoothed")
plot(closes[N:-N], label="closes")
legend(loc='best')
show()
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The closing prices of AAPL smoothed with the Blackman window should appear  
as follows:

What just happened?
We plotted the closing price of AAPL from our sample data file that was smoothed using the 
Blackman window with the NumPy blackman function.

Hamming window
The Hamming window is formed by a weighted cosine. The formula is as follows:

w(n) cos0.54+0.46
M-1

2 n( (0 n< < M-1

The NumPy hamming function returns the Hamming window. The only parameter is the 
number of points in the output window. If this number is 0 or less than 0, an empty array  
is returned.
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Time for action – plotting the Hamming window
Let's plot the Hamming window:

1. Calculating the Hamming window: Call the NumPy hamming function.

window = numpy.hamming(42) 

2. Plotting the Hamming window: Plot the window with Matplotlib.

plot(window)
show()

The Hamming window plot is as follows:

What just happened?
We plotted the Hamming window with the NumPy hamming function
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Kaiser window
The Kaiser window is formed by the Bessel function. The formula is as follows:

w(n) I0
1- 4n2

(M-1)
2 (( /I0( )

Here I0 is the zero order Bessel function The NumPy kaiser function returns the Kaiser 
window. The first parameter is the number of points in the output window. If this number is 
0 or less than 0, an empty array is returned. The second parameter is the beta.

Time for action – plotting the Kaiser window
Let's plot the Kaiser window:

1. Calculating the Kaiser window: Call the NumPy kaiser function.

window = numpy.kaiser(42, 14)

2. Plotting the Kaiser window: Plot the window with Matplotlib.

plot(window)
show()

The Kaiser window would appear as follows:
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What just happened?
We plotted the Hamming window with the NumPy kaiser function.

Special mathematical functions
We will end this chapter with some special mathematical functions. First, the modified 
Bessel function of the first kind 0th order is represented in NumPy by i0. Second, the sinc 
function is represented in NumPy by a function with the same name.

Time for action – plotting the modified Bessel function 
Let's see what the modified Bessel function of the first kind 0th order looks like:

1. Calculate the x values: Compute evenly spaced values with the NumPy linspace 
function.

x = numpy.linspace(0, 4, 100)

2. Calculate the function values: Call the NumPy i0 function.

vals = numpy.i0(x)

3. Plot the function: Plot the modified Bessel function with Matplotlib:

plot(x, vals)
show()

The modified Bessel function would have the following output:
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What just happened?
We plotted the modified Bessel function of the first kind 0th order with the NumPy i0 
function.

Sinc
The sinc function is widely used in mathematics and signal processing. NumPy has a 
function with the same name.

Time for action - plotting the sinc function
We will plot the sinc function:

1. Compute the x values: Compute evenly spaced values with the NumPy linspace 
function.

x = numpy.linspace(0, 4, 100)

2. Compute the function values: Call the NumPy sinc function.

vals = numpy.sinc(x)

3. Plot the function: Plot the sinc function with Matplotlib.

plot(x, vals)
show()

The sinc function would have the following output:
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What just happened?
We plotted the well known sinc function with the NumPy sinc function.

Summary
This was a special chapter covering some of the more special NumPy topics. We covered 
sorting and searching, special functions, financial utilities, and window functions.

The next chapter will be about the very important subject of testing.

                 

       



                 

       



8
Assure Quality with Testing

Some programmers test only in production. If you are not one of them you're 
probably familiar with the concept of unit testing. Unit tests are automated 
tests written by a programmer to test his or her code. These tests could, for 
example, test a function or part of a function in isolation. Only a small unit of 
code is tested by each test. The benefits are increased confidence in the quality 
of the code, reproducible tests, and as a side effect, more clear code.

Python has good support for unit testing. Additionally, NumPy adds the 
numpy.testing package to that for NumPy code unit testing.

This chapter's topics include:

 � Unit testing

 � Asserts

 � Floating point precision

Assert functions
The NumPy testing package has a number of utility functions that test whether a 
precondition is true or not:

Function Description
assert_almost_equal Raises an exception if two numbers are not equal up 

to a specified precision
assert_approx_equal Raises an exception if two numbers are not equal up 

to a certain significance
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Function Description
assert_array_almost_equal Raises an exception if two arrays are not equal up to 

a specified precision
assert_array_equal Raises an exception if two arrays are not equal

assert_array_less  Raises an exception if two arrays do not have the 
same shape and the elements of the first array are 
strictly less than the elements of the second array

assert_equal Raises an exception if two objects are not equal
assert_raises Fails if a specified exception is not raised by a 

callable invoked with defined arguments
assert_warns Fails if a specified warning is not thrown
assert_string_equal Asserts that two strings are equal

Time for action – asserting almost equal
Imagine that you have two numbers that are almost equal. Let's use the assert_almost_
equal function  to check whether they are equal:

1. Call the function with low precision (up to 7 decimal places):

print "Decimal 6", numpy.testing.assert_almost_equal(0.123456789, 
0.123456780, decimal=7)

Note that no exception is raised, as you can see in the following result:

Decimal 6 None

2. Call the function with high precision (up to 8 decimal places):

print "Decimal 7", numpy.testing.assert_almost_equal(0.123456789, 
0.123456780, decimal=8)

The result is:

Decimal 7

Traceback (most recent call last):

  …

  raise AssertionError(msg)

AssertionError: 

Arrays are not almost equal

 ACTUAL: 0.123456789

 DESIRED: 0.12345678
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What just happened?
We used the assert_almost_equal function from the NumPy testing package to check 
whether 0.123456789 and 0.123456780 are equal for different decimal precision.

Pop quiz – specifying decimal precision
1. Which parameter of the assert_almost_equal function specifies the decimal 

precision?

a. decimal

b. precision

c. tolerance

d. significant

Approximately equal arrays
The assert_approx_equal function raises an exception if two numbers are not equal up 
to a certain number of significant digits. The function result is an exception that is triggered  
by the condition:

abs(actual - expected) >= 10**-(significant - 1)

Time for action – asserting approximately equal
Let's take the numbers from the previous Time for action tutorial and let the 
assert_approx_equal function work on them:

1. Call the function with low significance:

print "Significance 8", numpy.testing.assert_approx_
equal(0.123456789, 0.123456780,
significant=8)

The result is:

Significance 8 None

2. Call the function with high significance:

print "Significance 9",  
  numpy.testing.assert_approx_equal 
  (0.123456789, 0.123456780, significant=9)
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An exception is thrown:

Significance 9

Traceback (most recent call last):

  ...

    raise AssertionError(msg)

AssertionError: 

Items are not equal to 9 significant digits:

 ACTUAL: 0.123456789

 DESIRED: 0.12345678

What just happened?
We used the assert_approx_equal function from the NumPy testing package to check 
whether 0.123456789 and 0.123456780 are equal for different decimal precision.

Almost equal arrays
The assert_array_almost_equal function raises an exception if two arrays are not 
equal up to a specified precision. The function checks whether the two arrays have the same 
shape. Then, the values of the arrays are compared element-by-element with:

|expected - actual| < 0.5 10-decimal

Time for action – asserting arrays almost equal
Let's form arrays with the values from the previous Time for action tutorial by adding a 0 to 
each array:

1. Calling the function with lower precision:

print "Decimal 8", numpy.testing.assert_array_almost_equal([0,  
  0.123456789], [0, 0.123456780], decimal=8)

The result is:

Decimal 8 None

2. Calling the function with higher precision:

print "Decimal 9", numpy.testing.assert_array_almost_equal([0,  
  0.123456789], [0, 0.123456780], decimal=9)

An exception is thrown:

Decimal 9

Traceback (most recent call last):

  …
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 assert_array_compare

    raise AssertionError(msg)

AssertionError: 

Arrays are not almost equal

(mismatch 50.0%)

 x: array([ 0.        ,  0.12345679])

 y: array([ 0.        ,  0.12345678])

What just happened?
We compared two arrays with the NumPy array_almost_equal function.

Have a go hero – comparing array with different shapes
Use the NumPy array_almost_equal function to compare two arrays with different shapes.

Equal arrays
The assert_array_equal function raises an exception if two arrays are not equal. The 
shape of the arrays must have to be equal and the elements of each array must be equal. 
NaNs are allowed in the arrays. Alternatively, arrays can be compared with the array_
allclose function. This function has the parameters atol (absolute tolerance) and rtol 
(relative tolerance). For two arrays a and b, these parameters satisfy the equation:

|a - b| <= (atol + rtol * |b|)

Time for action – comparing arrays
Let's compare two arrays with the functions we just mentioned. We will reuse the arrays 
from the previous Time for action tutorial and add a NaN to them:

1. Call the array_allclose function:

print "Pass", numpy.testing.assert_allclose([0, 0.123456789,  
  numpy.nan], [0, 0.123456780, numpy.nan], rtol=1e-7, atol=0)

The result is:

Pass None
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2. Call the array_equal function:

print "Fail", numpy.testing.assert_array_equal([0, 0.123456789,  
  numpy.nan], [0, 0.123456780, numpy.nan])

An exception is thrown:

Fail

Traceback (most recent call last):

  …

assert_array_compare

    raise AssertionError(msg)

AssertionError: 

Arrays are not equal

(mismatch 50.0%)

 x: array([ 0.        ,  0.12345679,         nan])

 y: array([ 0.        ,  0.12345678,         nan])

What just happened?
We compared two arrays with the array_allclose function and the array_equal 
function.

Ordering arrays
The assert_array_less function raises an exception if two arrays do not have the same 
shape and the elements of the first array are strictly less than the elements of the second array.

Time for action – checking the array order
Let's check whether one array is strictly greater than another array:

1. Call the assert_array_less function with two strictly ordered arrays

print "Pass", numpy.testing.assert_array_less([0, 0.123456789,  
  numpy.nan], [1, 0.23456780, numpy.nan])

The result:

Pass None

2. Failing test: Call the assert_array_less function:

print "Fail", numpy.testing.assert_array_less([0, 0.123456789,
   numpy.nan], [0, 0.123456780, numpy.nan])
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An exception is thrown:

Fail

Traceback (most recent call last):

  ...

    raise AssertionError(msg)

AssertionError: 

Arrays are not less-ordered

(mismatch 100.0%)

 x: array([ 0.        ,  0.12345679,         nan])

 y: array([ 0.        ,  0.12345678,         nan])

What just happened?
We checked the ordering of two arrays with the assert_array_less function.

Objects comparison
The assert_equal function raises an exception if two objects are not equal. The objects do 
not have to be NumPy arrays, they can also be lists, tuples, or dictionaries.

Time for action – comparing objects
Suppose you need to compare two tuples. We can use the assert_equal function to 
do that:

1. Call  the assert_equal function:

print "Equal?", numpy.testing.assert_equal((1, 2), (1, 3))

An exception is thrown:

Equal?

Traceback (most recent call last):

  ...

    raise AssertionError(msg)

AssertionError: 

Items are not equal:

item=1

 ACTUAL: 2

 DESIRED: 3
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What just happened?
We compared two tuples with the assert_equal function—an exception was raised 
because the tuples were not equal to each other.

String comparison
The assert_string_equal function asserts that two strings are equal. If the test fails an 
exception is thrown and the difference between the strings is shown. The case of the string 
characters matters.

Time for action – comparing strings
Let's compare strings.  Both strings are the word "NumPy":

1. Call the assert_string_equal function to compare a string with itself. This test, 
of course, should pass:

print "Pass", numpy.testing.assert_string_equal("NumPy", "NumPy")

The test passes:

Pass None

2. Call the assert_string_equal function to compare a string with another string 
with the same letters but different casing. This test should throw an exception:

print "Fail", numpy.testing.assert_string_equal("NumPy", "Numpy")

An exception is thrown:

Fail

Traceback (most recent call last):

  …

    raise AssertionError(msg)

AssertionError: Differences in strings:

- NumPy?    ^

+ Numpy?    ^

What just happened?
We compared two strings with the assert_string_equal function. The test threw an 
exception when the casing did not match.
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Floating point comparisons
The assert_array_almost_equal_nulp and assert_array_max_ulp NumPy 
functions provide consistent floating point comparisons. ULP stands for Unit of Least 
Precision of floating point numbers. According to the IEEE 754 specification, a half ULP 
precision is required for elementary arithmetic operations.

Machine epsilon is the largest relative rounding error in floating point arithmetic. Machine 
epsilon is equal to ULP relative to 1. The NumPy finfo function allows us to determine the 
machine epsilon.

Time for action – comparing with 
assert_array_almost_equal_nulp

Let's see the assert_array_almost_equal_nulp function in action:

1. Determine the machine epsilon with the finfo function:

eps = numpy.finfo(float).eps
print "EPS", eps

The epsilon would be:

EPS 2.22044604925e-16

2. Compare two almost equal floats: Compare 1.0 with 1 + epsilon using the 
assert_almost_equal_nulp function. Do the same for 1 + 2 * epsilon:

print "1",
  numpy.testing.assert_array_almost_equal_nulp(1.0, 1.0 + eps)
print "2",
  numpy.testing.assert_array_almost_equal_nulp(1.0, 1.0 + 2 * eps)

The result:

1 None

2

Traceback (most recent call last):

  …

 assert_array_almost_equal_nulp

    raise AssertionError(msg)

AssertionError: X and Y are not equal to 1 ULP (max is 2)
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What just happened?
We determined the machine epsilon with the finfo function. We then compared 1.0 with 
1 + epsilon with the assert_almost_equal_nulp function. This test passed, however 
adding a little bit more resulted in an exception.

Comparison of floats with more ULPs
The assert_array_max_ulp function allows you to specify an upper bound for the 
number ULPs you would allow. The maxulp parameter accepts an integer value for the limit. 
The value of this parameter is 1 by default.

Time for action – comparing using maxulp of 2
Let's do the same comparisons as in the previous Time for action tutorial, but specify a 
maxulp of 2 when necessary:

1. Determine the machine epsilon with the finfo function:

eps = numpy.finfo(float).eps
print "EPS", eps

The epsilon would be:

EPS 2.22044604925e-16

2. Do the comparisons as done in the previous Time for action tutorial, but use the 
assert_array_max_ulp function with the appropriate maxulp value:

print "1", numpy.testing.assert_array_max_ulp(1.0, 1.0 + eps)
print "2", numpy.testing.assert_array_max_ulp(1.0, 1 + 2 * eps,  
  maxulp=2)

The output:

1 1.0

2 2.0

What just happened?
We compared the same values as the previous Time for action tutorial, but specified a 
maxulp of 2 in the second comparison. Using the assert_array_max_ulp function with 
the appropriate maxulp value, these tests passed with a return value of the number of ULPs.
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Summary
We learned about testing and NumPy testing utilities in this chapter. We covered unit testing, 
assert functions and floating point precision.

The topic of the next chapter is Matplotlib—the Python scientific visualization and  
graphing library.

                 

       



                 

       



9
Plotting with Matplotlib

Matplotlib is a very useful python plotting library. It integrates nicely with 
NumPy but is a separate open source project. You can find a gallery of beautiful 
examples at http://matplotlib.sourceforge.net/gallery.html.

Matplotlib also has utility functions to download and manipulate data from 
Yahoo Finance. We will see several examples of stock charts.

This chapter features extended coverage of:

 � Simple plots

 � Subplots

 � Histograms

 � Plot Customization

 � Logplots

Simple plots
The matplotlib.pyplot package contains functionality for simple plots. It is important 
to remember that each subsequent function call changes the state of the current plot. 
Eventually we will want to either save the plot in a file or display it with the show function.
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Time for action – plotting a polynomial function
To illustrate how plotting works, let's display some polynomial graphs. We will use the 
NumPy polynomial function  poly1d to create a polynomial.

1. Create the polynomial: Take the standard input values as polynomial coefficients. 
Use the NumPy poly1d function to create a polynomial.

func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))

2. Create the x values: Create the x values with the NumPy linspace function. Use 
the range -10 to 10 and create 30 even spaced values.

x = numpy.linspace(-10, 10, 30)

3. Calculate the polynomial values: Calculate the polynomial values using the 
polynomial that we created in the first step.

y = func(x)

4. Call the plot function: Call the plot function, this does not immediately display 
the graph.

pyplot.plot(x, y)

5. Add a label to the x axis: Add a label to the x axis with xlabel function.

pyplot.xlabel('x')

6. Add a label to the y axis: Add a label to the y axis with ylabel function.

pyplot.ylabel('y(x)')

7. Display the plot on the screen: Call the show function to display the graph.

pyplot.show()

Here is a plot with polynomial coefficients 1, 2, 3, and 4:
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What just happened?
We displayed a graph of a polynomial on our screen. We added labels to the x and y axis.

Pop quiz – doing the thing
1. What does the plot function do?

a. It displays two-dimensional plots on screen

b. It saves an image of a two-dimensional plot in a file

c. It does both a and b...

d. It does neither a, b, or c

Plot format string
The plot function accepts an unlimited number of arguments. In the previous section 
we gave it two arrays as arguments. We could also specify the line color and style with an 
optional format string. By default it is a solid blue line denoted as b-, but you can specify a 
different color and style such as red dashes.

Time for action – plotting a polynomial and its derivative
Let's plot a polynomial and its first order derivative using the derive function with m as 1. 
We already did the first part in the previous Time for action tutorial. We want to have two 
different line styles to be able to discern what is what.

1. Differentiate: Create and differentiate the polynomial.

func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
func1 = func.deriv(m=1)
x = numpy.linspace(-10, 10, 30)
y = func(x)
y1 = func1(x)

2. Plot the polynomial and its derivative: Plot the polynomial and its derivative in two 
different styles: red circles and green dashes. You cannot see the colors in a print 
copy of this book so you will have to try it out for yourself.

pyplot.plot(x, y, 'ro', x, y1, 'g--')
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.show()
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The graph again with polynomial coefficients 1, 2, 3, and 4:

What just happened?
We plotted a polynomial and its derivative using two different line styles and one call of the 
plot function.

Subplots
At a certain point you will have too many lines in one plot. Still you would like to have 
everything grouped together. We can achieve this with the subplot function.

Time for action – plotting a polynomial and its derivatives
Let's plot a polynomial and its first and second derivative. We will make three subplots for 
the sake of clarity:

1. Create the polynomial and its derivatives: Create a polynomial and its derivatives 
using the following code.

func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
x = numpy.linspace(-10, 10, 30)
y = func(x)
func1 = func.deriv(m=1)
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y1 = func1(x)
func2 = func.deriv(m=2)
y2 = func2(x)

2. Create the first subplot: Create the first subplot of the polynomial with the 
subplot function. The first parameter of this function is the number of rows, the 
second parameter is the number of columns, and the third parameter is an index 
number starting with 1. Alternatively, you can combine the three parameters into a 
single number such as 311. The subplots will be organized in 3 rows and 1 column. 
Give the subplot the title "Polynomial". Make a solid red line.

pyplot.subplot(311)
pyplot.plot(x, y, 'r-')
pyplot.title("Polynomial")

3. Create the second subplot: Create the third subplot of the first derivative with the  
subplot function. Give the subplot the title "First Derivative". Use a line of blue 
triangles.

pyplot.subplot(312)
pyplot.plot(x, y1, 'b^')
pyplot.title("First Derivative")

4. Create the third subplot: Create the second subplot of the second derivative with 
the  subplot function. Give the subplot the title "Second Derivative". Use a line of 
green circles.

pyplot.subplot(313)
pyplot.plot(x, y2, 'go')
pyplot.title("Second Derivative")
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.show()

                 

       



Plotting with Matplotlib

[ 170 ]

The three subplots with polynomial coefficients 1, 2, 3, and 4:

What just happened?
We plotted a polynomial and its first and second derivative using three different line styles 
and three subplots in 3 rows and 1 column.

Finance
Matplotlib can help us monitor our stock investments. The matplotlib.finance package 
has utilities with which we can download stock quotes from Yahoo Finance (http://
finance.yahoo.com/). The data can then be plotted as candlesticks.
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Time for action – plotting a year's worth of stock quotes
We can plot a year's worth of stock quotes data with the  matplotlib.finance package. 
This will require a connection to Yahoo Finance, which will be the data source.

1. Determine start date: Determine the start date by subtracting 1 year from today.

today = date.today()
start = (today.year - 1, today.month, today.day)

2. Create locators: We need to create so-called locators. These objects from the 
matplotlib.dates package are needed to locate months and days on the x-axis.

alldays = DayLocator() 
months = MonthLocator()

3. Create a formatter: Create a date formatter to format the dates on the x-axis. This 
formatter will create a string containing the short name of a month and the year.

month_formatter = DateFormatter("%b %Y")

4. Download the quotes: Download the stock quote data from Yahoo finance with the 
code below:

quotes = quotes_historical_yahoo(sys.argv[1], start, today)

5. Create a figure: Create a Matplotlib figure object—this is a top level container for 
plot components.

fig = pyplot.figure()

6. Add a subplot: Add a subplot to the figure.

ax = fig.add_subplot(111)

7. Set the major locator: Set the major locator on the x axis to the months locator. This 
locator is responsible for the big ticks on the x-axis.

ax.xaxis.set_major_locator(months)

8. Set the minor locator: Set the minor locator on the x axis to the days locator. This 
locator is responsible for the small ticks on the x-axis.

ax.xaxis.set_minor_locator(alldays) 

9. Set the major formatter: Set the major formatter on the x axis to the months 
formatter. This formatter is responsible for the labels of the big ticks on the x axis.

ax.xaxis.set_major_formatter(month_formatter)
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10. Create the candlesticks: A function in the matplotlib.finance package allows us 
to display candlesticks. Create the candlesticks using the quotes data. It is possible 
to specify the width of the candlesticks. For now use the default value.

candlestick(ax, quotes)

11. Format the x axis labels as dates: Format the labels on the x-axis as dates. This 
should rotate the labels on the x axis, so that they fit better.

fig.autofmt_xdate()
pyplot.show()

The candlestick chart for DISH (Dish Network Corp.) would appear as follows:

What just happened?
We downloaded a year's worth of data from Yahoo Finance. We charted this data using 
candlesticks.

Histograms
Histograms visualize the distribution of numerical data. Matplotlib has the handy hist 
function that graphs histograms. The  hist function has two arguments—the array 
containing the data and the number of bars.
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Time for action – charting stock price distributions
Let's chart the stock price distribution of quotes from Yahoo Finance.

1. Download the data: Download the data going back 1 year.

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)

2. Extract the close price: The quotes data in the previous step is stored in a Python 
list. Convert this to a NumPy array and extract the close prices.

quotes = numpy.array(quotes)
close = quotes.T[4]

3. Draw the histogram: Draw the histogram with a reasonable number of bars.

pyplot.hist(close, numpy.sqrt(len(close)))
pyplot.show()

The histogram for DISH would appear as follows:

What just happened?
We charted the stock price distribution of DISH as histogram.
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Have a go hero – drawing a bell curve
Overlay a bell curve using the average price and standard deviation. This is, of course, only 
an exercise.

Logarithmic plots
Logarithmic plots are useful when the data has a wide range of values. Matplotlib has the 
functions semilogx (logarithmic x axis), semilogy (logarithmic y axis), and loglog ( x and 
y axis logarithmic).

Time for action – plotting stock volume
Stock volume varies a lot, so let's plot it on a logarithmic scale. First we need to download 
historical data from Yahoo Finance, extract the dates and volume, create locators and a date 
formatter, create the figure, and add it a subplot. We already went through these steps in the 
previous Time for action tutorial, so we will skip them here.

1. Logarithmic plot: Plot the volume using a logarithmic scale.

pyplot.semilogy(dates, volume)

Now set the locators and format the x-axis as dates. Instructions for these steps can 
be found in the previous Time for action tutorial as well. The stock volume using a 
logarithmic scale for DISH would appear as follows:
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What just happened?
We plotted stock volume using a logarithmic scale.

Scatter plots
A scatter plot displays values for two numerical variables in the same data set. The 
Matplotlib scatter function creates a scatter plot. Optionally: we can specify color and size 
of the data points in the plot as well as alpha transparency.

Time for action – plotting price and volume returns 
with scatter plot

We can easily make a scatter plot of the stock price and volume returns. Again let's 
download the necessary data from Yahoo Finance.

1. Extract the close price and volume: The quotes data in the previous step is 
stored in a Python list. Convert this to a NumPy array and extract the close and 
volume values.

dates = quotes.T[4]
volume = quotes.T[5]

2. Calculate the returns: Calculate the close price and volume returns.

ret = numpy.diff(close)/close[:-1]
volchange = numpy.diff(volume)/volume[:-1]

3. Create a figure: Create a Matplotlib figure object.

fig = pyplot.figure()

4. Add a subplot: Add a subplot to the figure.

ax = fig.add_subplot(111)

5. Create the scatter plot: Create the scatter plot with the color of the data points 
linked to the close return, and the size linked to the volume change.

ax.scatter(ret, volchange, c=ret * 100,
  s=volchange * 100, alpha=0.5)

6. Title and grid: Set the title of the plot and put a grid on it.

ax.set_title('Close and volume returns')
ax.grid(True)

pyplot.show()
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The scatter plot for DISH will appear as follows:

What just happened?
We made a scatter plot of the close price and volume returns for DISH.

Fill between
The fill_between function fills a region of a plot with a specified color. We can also 
choose an alpha channel value. The function also has a where parameter so that we can 
shade a region based on a condition.

Time for action – shading plot regions based on a condition
Imagine that you want to shade the region of a stock chart, where the closing price is below 
average with different color than when it is above the mean. The fill_between function is 
the best choice for the job. We will again omit the steps of downloading historical data going 
back 1 year, extracting dates and close prices, creating locators and date formatter.

1. Create a figure: Create a Matplotlib figure object.

fig = pyplot.figure()
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2. Add a subplot: Add a subplot to the figure.

ax = fig.add_subplot(111)

3. Plot the closing price: Plot the closing price.

ax.plot(dates, close)

4. Call fill_between: Shade the regions of the plot below the closing price using 
different colors depending whether the values are below or above the average price.

pyplot.fill_between(dates, close.min(), close,  
  where=close>close.mean(), facecolor="green", alpha=0.4)
pyplot.fill_between(dates, close.min(), close,
  where=close<close.mean(), facecolor="red", alpha=0.4)

Now we can finish the plot by setting locators and formatting the x-axis values as dates. The 
stock price using conditional shading for DISH:

What just happened?
We shaded the region of a stock chart, where the closing price is below average with 
different color than when it is above the mean.
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Legend and annotations
Legends and annotations are essential for good plots. We can create transparent legends 
with the legend function and let Matplotlib figure out where to place them. Also with the 
annotate function we can put annotations very accurately on a plot. There are a large 
number of annotation and arrow styles.

Time for action – using legend and annotations
In Chapter 3, Get Into Terms with Commonly Used Functions we learned how to calculate the 
exponential moving average of stock prices. We will plot the close price of a stock and three 
of its exponential moving averages. To clarify the plot, we will add a legend. Also, we will 
indicate crossovers of two of the averages with annotations. Some steps are again omitted to 
avoid repetition. 

1. Calculate and plot the exponential moving averages: Go back to Chapter 3, Get into 
Terms with Commonly Used Functions if needed and review the exponential moving 
average algorithm. Calculate and plot the exponential moving averages of 9, 12 and 
15 periods.

emas = []
for i in range(9, 18, 3):
   weights = numpy.exp(numpy.linspace(-1., 0., i))
   weights /= weights.sum()

   ema = numpy.convolve(weights, close)[i-1:-i+1]
   idx = (i - 6)/3
   ax.plot(dates[i-1:], ema, lw=idx, label="EMA(%s)" % (i))
   data = numpy.column_stack((dates[i-1:], ema))
   emas.append(numpy.rec.fromrecords(
     data, names=["dates", "ema"]))

Notice that the plot function call needs a label for the legend. We stored the 
moving averages in record arrays for the next step.

2. Find the crossover points: Let's find the crossover points of the first two moving 
averages.

first = emas[0]["ema"].flatten()
second = emas[1]["ema"].flatten()
bools = numpy.abs(first[-len(second):] - second)/second < 0.0001
xpoints = numpy.compress(bools, emas[1])
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3. Annotate the crossover points: Now that we have the crossover points annotate 
them with arrows. Make sure that the annotation text is slightly away from the 
crossover points.

for xpoint in xpoints:
   ax.annotate('x', xy=xpoint, textcoords='offset points',
                xytext=(-50, 30),
                arrowprops=dict(arrowstyle="->"))

4. Add a legend: Add a legend and let Matplotlib decide where to put it.

leg = ax.legend(loc='best', fancybox=True)

5. Make the legend transparent: Make the legend transparent by setting the alpha 
channel value.

leg.get_frame().set_alpha(0.5)

The stock price and moving averages with legend and annotations would appear as follows: 

What just happened?
We plotted the close price of a stock and three of its exponential moving averages. We 
added a legend to the plot. We annotated the crossover points of the first two averages  
with annotations. 
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Summary
This chapter was about Matplotlib—a Python plotting library. We covered simple plots, 
histograms, plot customization, subplots and logplots. We also saw a few examples of 
displaying stock charts.

The next chapter is about SciPy—a scientific Python framework that is built on top  
of NumPy.

                 

       



10
When NumPy is Not Enough: SciPy 

and Beyond

SciPy is built on top of NumPy. It adds functionality such as numerical 
integration, optimization, statistics, and special functions.

In this chapter we will cover the following topics:

 � File I/O

 � Statistics

 � Signal processing

 � Optimization

 � Interpolation

 � Image processing

Matlab and Octave
Matlab and its open source alternative Octave are popular mathematical programs. The 
scipy.io package has functions that let you load Matlab or Octave code in Python 
programs and vice versa. The loadmat function loads a .mat file. The savemat function 
saves a dictionary of names and arrays into a .mat file.
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Time for action – saving and loading a .mat file
If we start with NumPy code and decide to use the said code within a Matlab or Octave 
environment, the easiest thing to do is create a .mat file. We then can load the file within 
Matlab or Octave. Let's go through the necessary steps.

1. Call savemat: Create a NumPy array and call savemat to create a .mat file. This 
function has two parameters: a file name, and a dictionary containing variable 
names and values.

a = numpy.arange(7)

scipy.io.savemat("a.mat", {"array": a})

2. Load the .mat file: Within a Matlab or Octave environment, load the .mat file and 
check the stored array.

octave-3.4.0:7> load a.mat
octave-3.4.0:8> a

octave-3.4.0:8> array
array =

  0
  1
  2
  3
  4
  5
  6

What just happened?
We created a .mat file from NumPy code and loaded it within Octave. We checked the 
NumPy array that was created.

Pop quiz – loading .mat files
1. Which function loads .mat files?

a. Loadmatlab

b. loadmat

c. loadoct

d. frommat
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Statistics
The SciPy statistics module is called scipy.stats. There is one class that implements 
continuous distributions and one class that implements discrete distributions. Also in this 
module, functions can be found that can perform a great number of statistical tests.

Time for action – analyzing random values
We will generate random values that mimic a normal distribution and analyze the generated 
data with statistical functions from the scipy.stats package.

1. Generate random values: Generate random values from a normal distribution using 
the scipy.stats package.

generated = scipy.stats.norm.rvs(size=900)

2. Fit the values: Fit the generated values to a normal distribution. This basically gives 
us the mean and standard deviation of the data set.

print "Mean", "Std", scipy.stats.norm.fit(generated)

The mean and standard deviation would be:

Mean Std (0.0071293257063200707, 0.95537708218972528)

3. Skewness test: Perform a skewness test. This test returns two values. The second 
value is the p value—the probability that the skewness of the data set corresponds 
to a normal distribution. P values range from 0 to 1.

print "Skewtest", "pvalue", scipy.stats.skewtest(generated)

The result of the skewness test would be:

Skewtest pvalue (-0.62120640688766893, 0.5344638245033837)

So there is a 53 percent chance that we are dealing with a normal distribution.

4. Kurtosis test: Perform a kurtosis test. This test is setup similarly to the skewness 
test, but of course, applies to kurtosis.

print "Kurtosistest", "pvalue",
  scipy.stats.kurtosistest(generated)

The result of the kurtosis test would be:

Kurtosistest pvalue (1.3065381019536981, 0.19136963054975586)
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5. Normality test: Perform a normality test. This test also returns two values, of which 
the second is a p value.

print "Normaltest", "pvalue", scipy.stats.normaltest(generated)

The result of the normality test would be:

Normaltest pvalue (2.09293921181506, 0.35117535059841687)

6. Score at percentile: We can find the value at a certain percentile easily with SciPy.

print "95 percentile",
  scipy.stats.scoreatpercentile(generated, 95)

The value at the 95th percentile would be:

95 percentile 1.54048860252

7. Percentile of score: Do the opposite of the previous step to find the percentile at 1.

print "Percentile at 1",
  scipy.stats.percentileofscore(generated, 1)

The percentile at 1 would be:

Percentile at 1 85.5555555556

8. Plot with Matplotlib: Plot the generated values in a histogram with Matplotlib. 
More information about Matplotlib can be found in the previous chapter.

matplotlib.pyplot.hist(generated)
matplotlib.pyplot.show()

The histogram of the generated random values is as follows:
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What just happened?
We created a data set from a normal distribution and analyzed it with the scipy.stats 
module.

Have a go hero – improving the data generation
Judging from the histogram in the previous Time for action tutorial, there is still room 
for improvement when it comes to generating the data. Try using NumPy or different 
parameters of the scipy.stats.norm.rvs function.

Samples comparison and SciKits
Often we will have two data samples, maybe from different experiments, that are somehow 
related. Statistical tests exist that can compare the samples. Some of these have been 
implemented in the scipy.stats module.

Another statistical test that I like is the Jarque Bera normality test from scikits.
statsmodels.stattools. SciKits are small experimental Python software toolkits. 
They are not part of SciPy.

Time for action – comparing stock log returns
We will download the stock quotes for the last year of two trackers using Matplotlib. As 
mentioned in the previous chapter we can retrieve quotes from Yahoo Finance. We will 
compare the log returns of the close price of DIA and SPY. Also we will perform the Jarque 
Bera test on the difference of the log returns.

1. Download quotes: Write a function that can return the close price for a 
specified stock.

def get_close(symbol):
   today = date.today()
   start = (today.year - 1, today.month, today.day)

   quotes = quotes_historical_yahoo(symbol, start, today)
   quotes = numpy.array(quotes)

   return quotes.T[4]

2. Calculate log returns: Calculate the log returns for DIA and SPY. The log returns are 
calculated by taking the natural logarithm of the close price and then taking the 
difference of consecutive values.

spy =  numpy.diff(numpy.log(get_close("SPY")))
dia =  numpy.diff(numpy.log(get_close("DIA")))
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3. Compare means: The means comparison test checks whether two different samples 
could have the same mean value. Two values are returned, of which the second is 
the p value from 0 to 1.

print "Means comparison", scipy.stats.ttest_ind(spy, dia)

The result of the means comparison test would be:

Means comparison (-0.017995865641886155, 0.98564930169871368)

So there is about a 98 percent chance that the two samples have the same mean log 
return.

4. Kolmogorov Smirnov test: The Kolmogorov Smirnov two samples test tells us how 
likely it is that two samples are drawn from the same distribution.

print "Kolmogorov smirnov test", scipy.stats.ks_2samp(spy, dia)

Again two values are returned of which the second value is the p value.

Kolmogorov smirnov test (0.063492063492063516, 
0.67615647616238039)

5. Jarque Bera test: Unleash the Jarque Bera normality test on the difference of the log 
returns.

print "Jarque Bera test",  
  scikits.statsmodels.stattools.jarque_bera(spy – dia)[1]

The p value of the Jarque Bera normality test would be:

Jarque Bera test 0.596125711042

6. Plot histograms with Matplotlib: Plot the histograms of the log returns and the 
difference thereof with Matplotlib.

matplotlib.pyplot.hist(spy, histtype="step", lw=1, label="SPY")
matplotlib.pyplot.hist(dia, histtype="step", lw=2, label="DIA")
matplotlib.pyplot.hist(spy - dia, histtype="step", lw=3,  
  label="Delta")
matplotlib.pyplot.legend()
matplotlib.pyplot.show()
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The histograms of the log returns and difference is as follows:

What just happened?
We compared samples of log returns for DIA and SPY. Also we performed the Jarque Bera 
test on the difference of the log returns.

Signal processing
The scipy.signal module contains filter functions and B-spline interpolation algorithms. 
A SciPy signal is defined as an array of numbers. An example of a filter is the detrend 
function. This function takes a signal and does a linear fit on it. This trend is then subtracted 
from the original input data.

Time for action – detecting a trend in QQQ
Often we are more interested in the trend of a data sample than in detrending it. Still we can 
get the trend back easily after detrending. Let's do that for 1 year of price data for QQQ:

1. Download quotes: Write code that gets the close price and corresponding dates 
for QQQ.

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo("QQQ", start, today)
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quotes = numpy.array(quotes)

dates = quotes.T[0]
qqq = quotes.T[4]

2. Detrend the signal: Detrend the signal.

y = scipy.signal.detrend(qqq)

3. Create locators: Create month and day locators for the dates.

alldays = DayLocator()
months = MonthLocator()

4. Date formatter: Create a date formatter that creates a string of month name 
and year.

month_formatter = DateFormatter("%b %Y")

5. Figure and subplot: Create a figure and subplot.

fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(111)

6. Data and underlying trend: Plot the data and underlying trend by subtracting the 
detrended signal.

matplotlib.pyplot.plot(dates, qqq, 'o', dates, qqq - y, '-')

7. Locators and formatter: Set the locators and formatter.

ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(month_formatter)

8. X axis labels: Format the x axis labels as dates.

fig.autofmt_xdate()
matplotlib.pyplot.show()
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The following figure shows the QQQ prices with a trend line:

What just happened?
We plotted the closing price for QQQ with a trend line.

Fourier analysis
Signals in the real world often have a periodic nature. A commonly used tool to deal with 
these signals is the Fourier transform. Functions for Fourier transforms can be found in the 
scipy.fftpack module. Included in the package are fast Fourier transforms, differential 
and pseudo-differential operators, as well as several helper functions. Matlab users will be 
pleased to know that a number of functions in the scipy.fftpack module have the same 
name as their Matlab counterparts and similar function as their Matlab equivalents.

Time for action – filtering a detrended signal
We learned in the previous Time for action tutorial how to detrend a signal. This detrended 
signal could have a cyclical component. Let's try to visualize this. Some of the steps are a 
repetition of steps in the previous Time for action tutorial, such as downloading the data and 
setting up Matplotlib objects. These steps are omitted here.

1. Frequency spectrum: Apply Fourier transforms, giving us the frequency spectrum.

amps = numpy.abs(scipy.fftpack.fftshift(scipy.fftpack.rfft(y)))

                 

       



When NumPy is Not Enough: SciPy and Beyond

[ 190 ]

2. Noise filter: Filter out the noise. Let's say if the magnitude of a frequency 
component is below 10 percent of the strongest component, throw it out:

amps[amps < 0.1 * amps.max()] = 0

3. Inverse transform: Transform the filtered signal back to the original domain and plot 
it together with the detrended signal.

matplotlib.pyplot.plot(dates, y, 'o', label="detrended")
matplotlib.pyplot.plot(dates,  
  -scipy.fftpack.irfft(scipy.fftpack.ifftshift(amps)),  
  label="filtered")

4. X axis labels: Format the x axis labels as dates and add a legend:

fig.autofmt_xdate()
matplotlib.pyplot.legend()

5. Second subplot: Add a second subplot and plot the frequency spectrum after 
filtering.

ax2 = fig.add_subplot(212)
N = len(qqq)
matplotlib.pyplot.plot(numpy.linspace(-N/2, N/2, N), amps,  
  label="transformed")

6. Legend: Display the legend and plot.

matplotlib.pyplot.legend()
matplotlib.pyplot.show()

The following plots are of the signal and frequency spectrum:
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What just happened?
We detrended a signal and applied a simple filter on it using the scipy.fftpack module. 

Optimization
Several optimization algorithms are provided by the scipy.optimize module. One of 
the algorithms is a least squares fitting function leastsq. When calling this function, we 
are required to provide a residuals function. This function is used to minimize the sum of 
the squares of the residuals. Also, it is necessary to give the algorithm a starting point. This 
should be a best guess—as close as possible to the real solution. Otherwise execution will 
stop after about 800 iterations.

Time for action – fitting to a sine
In the previous Time for action tutorial we created a simple filter for detrended data. Now 
let's use a more restrictive filter that will leave us only with the main frequency component. 
We will fit a sinusoidal pattern to it and plot our results. This model has four parameters—
amplitude, frequency, phase, and vertical offset.

1. Download quotes: Write code that gets the close price and corresponding dates 
for QQQ.

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo("QQQ", start, today)
quotes = numpy.array(quotes)

dates = quotes.T[0]
qqq = quotes.T[4]

2. Detrended signal: Detrend the signal.

y = scipy.signal.detrend(qqq)

3. Locators: Create month and day locators for the dates.

alldays = DayLocator()
months = MonthLocator()

4. Date formatter: Create a date formatter that creates a string of month name 
and year.

month_formatter = DateFormatter("%b %Y")
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5. Figure and subplot: Create a figure and subplot.

fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(211)

6. Locators and formatter: Set the locators and formatter.

ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(month_formatter)

7. Frequency spectrum: Apply Fourier transforms giving us the frequency spectrum.

amps = numpy.abs(scipy.fftpack.fftshiftn(scipy.fftpack.rfft(y)))

8. Main component: Retrieve the main component of the frequency spectrum.

amps[amps < amps.max()] = 0

9. Residual functions: Define a residuals function based on a sine wave model.

def residuals(p, y, x):
   A,k,theta,b = p
   err = y-A * numpy.sin(2* numpy.pi* k * x + theta) + b

   return err

10. Inverse transform: Transform the filtered signal back to the original domain.

filtered = -scipy.fftpack.irfft(scipy.fftpack.ifftshift(amps))

11. Initial guess: Guess the values of the parameters we are trying to estimate.

N = len(qqq)
f = numpy.linspace(-N/2, N/2, N)
p0 = [filtered.max(), f[amps.argmax()]/(2*N), 0, 0]
print "P0", p0

The initial values would be:

P0 [2.6679532410065212, 0.00099598469163686377, 0, 0]

12. Least squares fit: Call the leastsq function.

plsq = scipy.optimize.leastsq(residuals, p0, args=(filtered,  
  dates))
p = plsq[0]
print "P", p

The final parameter values are:

P [  2.67678014e+00   2.73033206e-03  -8.00007036e+03  
-5.01260321e-03]
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13. First subplot: Finish the first subplot with detrended data, filtered data, and fit of 
the filtered data. Use a date format for the horizontal axis and add a legend.

matplotlib.pyplot.plot(dates, y, 'o', label="detrended")
matplotlib.pyplot.plot(dates, filtered, label="filtered")
matplotlib.pyplot.plot(dates, p[0] * numpy.sin(2 * numpy.pi *  
  dates * p[1] + p[2]) + p[3], '^', label="fit")
fig.autofmt_xdate()
matplotlib.pyplot.legend()

14. Second subplot: Add a second subplot with a legend of the main component of the 
frequency spectrum.

ax2 = fig.add_subplot(212)
matplotlib.pyplot.plot(f, amps, label="transformed")

matplotlib.pyplot.legend()
matplotlib.pyplot.show()

The following are the resulting charts:

What just happened?
We detrended 1 year of price data for QQQ. This signal was then filtered until only the main 
component of the frequency spectrum was left over. We fitted a sine to the filtered signal 
using the scipy.optimize module.
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Numerical integration
SciPy has a numerical integration package scipy.integrate, that has no equivalent 
in NumPy. The quad function can integrate a one variable function between two points. 
These points can be at infinity.

Time for action – calculating the Gaussian integral
The Gaussian integral is related to the error function, but has no finite limits. It evaluates to 
the square root of pi. Let's calculate the integral with the quad function.

1. Quad function: Calculate the Gaussian integral with the quad function.

print "Gaussian integral", numpy.sqrt(numpy.pi), 
scipy.integrate.quad(lambda x: numpy.exp(-x**2),  
-numpy.inf, numpy.inf)

The return value is the outcome and its error would be:

Gaussian integral 1.77245385091 (1.7724538509055159, 
1.4202636780944923e-08)

What just happened?
We calculated the Gaussian integral with the quad function.

Interpolation
The scipy.interpolate function interpolates a function based on experimental data. 
The interp1d class can create a linear or cubic interpolation function. By default a linear 
interpolation function is constructed, but if the kind parameter is set, a cubic interpolation 
function is created instead. The interp2d class works the same way, but in 2D.

Time for action – interpolating in one dimension
We will create data points using a sinc function and add some random noise to it. After 
that, we will do a linear and cubic interpolation, and plot the results.

1. Data points: Create the data points and add noise to it.

x = numpy.linspace(-18, 18, 36)
noise = 0.1 * numpy.random.random(len(x))
signal = numpy.sinc(x) + noise
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2. Linear interpolation: Create a linear interpolation function and apply it to an input 
array with five times as many data points.

interpreted = scipy.interpolate.interp1d(x, signal)
x2 = numpy.linspace(-18, 18, 180)
y = interpreted(x2)

3. Cubic interpolation: Do the same as in the previous step, but with cubic 
interpolation.

cubic = scipy.interpolate.interp1d(x, signal, kind="cubic")
y2 = cubic(x2)

4. Plot: Plot the results with Matplotlib.

matplotlib.pyplot.plot(x, signal, 'o', label="data")
matplotlib.pyplot.plot(x2, y, '-', label="linear")
matplotlib.pyplot.plot(x2, y2, '-', lw=2, label="cubic")

matplotlib.pyplot.legend()
matplotlib.pyplot.show()

The following diagram is a plot of the data, linear, and cubic interpolation: 

What just happened?
We created a data set from the sinc function and added noise to it. We then did linear and 
cubic interpolation using the interp1d class of the scipy.interpolate module.
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Image processing
With SciPy, we can do image processing using the scipy.ndimage package. The module 
contains various image filters and utilities.

Time for action – manipulating Lena
In the scipy.misc module, there is a utility which loads the image of "Lena". We will apply 
some filters on this image and rotate it.

1. Lena: Load the "Lena" image and display it in a subplot.

image = scipy.misc.lena().astype(numpy.float32)

matplotlib.pyplot.subplot(221)
matplotlib.pyplot.title("Original Image")
img = matplotlib.pyplot.imshow(image)

Note that we are dealing with a float32 array.

2. Median filter: Apply a median filter to the image and display it in a second subplot.

matplotlib.pyplot.subplot(222)
matplotlib.pyplot.title("Median Filter")
filtered = scipy.ndimage.median_filter(image, size=(42,42))
matplotlib.pyplot.imshow(filtered)

3. Rotation: Rotate the image and display it in the third subplot.

matplotlib.pyplot.subplot(223)
matplotlib.pyplot.title("Rotated")
rotated = scipy.ndimage.rotate(image, 90)
matplotlib.pyplot.imshow(rotated)

4. Prewitt filter: Apply a Prewitt filter to the image and display it in the fourth subplot.

matplotlib.pyplot.subplot(224)
matplotlib.pyplot.title("Prewitt Filter")
filtered = scipy.ndimage.prewitt(image)
matplotlib.pyplot.imshow(filtered)
matplotlib.pyplot.show()
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The following are the resulting images:

What just happened?
We manipulated the image of "Lena" in several ways using the scipy.ndimage module.

Summary
In this chapter we only scratched the surface of what is possible with SciPy and SciKits. Still, 
we learned a bit about file I/O, statistics, signal processing, optimization, interpolation, and 
image processing.

                 

       



                 

       



Pop Quiz Answers

Chapter 1, NumPy Quick Start

What does arrange(5) do? It creates a NumPy array with values 0 to 4.

The created NumPy array has values 0, 1, 2, 3, 4.

Chapter 2, Beginning with NumPy Fundamentals

How is the shape of an ndarray 
stored?

It is stored in a tuple.

Chapter 3, Get into Terms with Commonly Used Functions

Which function returns the weighted 
average of an array?

average

Chapter 4, Convenience Functions for Your Convenience

Which function returns the 
covariance of two arrays?

cov
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Chapter 5, Working with Matrices and ufuncs

What is the row delimiter in a string 
accepted by the mat and bmat 
functions?

Semicolon

Chapter 6, Move Further with NumPy Modules

Which function can create matrices? mat

Chapter 7, Peeking into Special Routines

Which NumPy module deals with 
random numbers?

random

Chapter 8, Assured Quality with Testing

Which parameter of  the assert_
almost_equal function specifies 
the decimal precision?

decimal

Chapter 9, Plotting with Matplotlib

What does the plot function do? It does neither a, b, or c.

Chapter 10, When NumPy is not enough SciPy and Beyond

Which function loads .mat files? loadmat

                 

       



Index
Symbols
2-by-2 identity matrix

creating  101
2-by-2 matrix

about  50
creating  28

3-by-3 matrix
creating  28

%hist command  23
.mat file, Matlab

loading  182
saving  182

/ operator  106, 107
// operator  107
% operator  107, 108
#scipy  24

A
abs function  30, 113, 155
accumulate method  104
add function  

about  104
ufuncs methods, applying on  104, 105

annotate function  178
annotations

about  178, 179
crossover points, annotating  179
crossover points, finding  178

annualized volatility  58
apply_along_axis function  63, 64, 80

arange function  17, 23, 26, 27, 34, 52, 87, 114, 
139

Arch Linux  13
argmax function  61, 86, 138
argmin function  61, 86, 138
argsort function  135
argwhere function  138
arithmetic functions

about  105
divide  106
floor_divide  106
/ operator  106
// operator  107
true_divide  106

array_allclose function  157, 158
array_almost_equal function  157
array attributes, NumPy

about  43
flat  45
imag  45
itemsize  44
.j  45
nbytes  44
ndim  43
real  45
size  44
T  44

array_equal function  158
array function  27, 28
array objects  26
arrays

almost equal arrays, asserting  156, 157
approximately equal arrays, asserting  155, 156
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clipping  78, 79
comparing  157, 158
compressing  78, 79
converting, to list  46, 47
creating  34
dividing  106, 107
elements, extracting from  139
equal arrays, asserting  157, 158
matrices, creating from  100
ordering  158, 159
reshaping  34
splitting  41

array shapes
manipulating  36, 37

assert_almost_equal function  153-155
assert_approx_equal function  153-156
assert_array_almost_equal function  154-156
assert_array_almost_equal_nulp function  

about  161
floating point, comparing  161, 162

assert_array_equal function  154, 157
assert_array_less function  154, 158, 159
assert_array_max_ulp function  161, 162
assert_equal function  154, 159, 160
assert functions

assert_almost_equal  153
assert_approx_equal  153
assert_array_almost_equal  154
assert_array_equal  154
assert_array_less  154
assert_equal  154
assert_raises  154
assert_string_equal  154
assert_warns  154

assert_raises function  154
assert_string_equal function  154, 160
assert_warns function  154
astype function  46, 91
atol parameter  157
ATR

about  65
calculating  65, 66

average function  52

B
bartlett function  144, 145

bartlett window
calculating  144
plotting  144, 145

BHP  82
Binets formula. See  golden ratio formula
binomial

gambling with  127, 129
binomial function  128, 129
bitwise functions  114, 115
bitwise_xor function  114
blackman function  145, 146
Blackman window

about  145
plotting  145
stock prices, smoothing with  145, 146

bmat function  99-102
Bollinger bands

about  70
enveloping with  71, 72

bool type  29

C
calc_profit function  93
character code  30, 31, 64
clip method  78
column_stack function  40
column stacking  40
comma separated values files. See  CSV files
comparison functions  114, 115
complex64 type  29
complex128 type  29
complex numbers

about  45, 137
array, creating  137
sorting  137

complex type  29
compound matrix

creating  101
compress function  79
concatenate function  38, 39
continuous distributions  130
converter function  59
convolve function  67-69
corrcoef function  83, 85
correlated pairs

trading  82
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correlation
about  82
computing, for stock returns  82-85

correlation coefficient  83
covariance  82
cov function  82
CSV files

about  50
data, loading from  51

cumprod function  79

D
data

about  49
fitting, to polynomial  85-87
loading, from CSV files  51
summarizing  61-64

data type  26
data type objects  30
dates

about  58
dealing with  58-61

datestr2num function  59
datetime object  59
Debian

about  13
NumPy, installing on  13
Python, installing on  10

depth stacking  39
depth-wise splitting  42
determinant

about  124
calculating, of matrix  124

det function  124
detrend function  187
diag function  122
diagonal function  82, 85
diff function  57, 58, 88
DISH

histogram  173
distribution (distro)  13
divide function  106
DMG file  14
dot function  74, 119, 120
dsplit function  41, 42
dstack function  39

dtype class
about  32
attributes  32

dtype constructors  31, 32

E
eigenvalues

about  120
calculating  120, 121

eigenvectors
about  120
calculating  120, 121

eig function  120
elements

extracting, from array  139
selecting, of array  28

ellipsis
used, for slicing  35

equal universal function  115
error function  194
exp function  69
exponential moving average

about  68
calculating  69, 70
switching to  72

extract function  138, 139
extremums  86
eye function  50

F
factorial

about  79
calculating  79

Fast Fourier transform
about  124
calculating  125, 126

features, IPython  20
Fedora  13
fft function  125, 126
fftshift function  126
Fibonacci matrix

creating  108
Fibonacci numbers

about  108
computing  108, 109
computing, with matrix  109
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File IO
about  49
files, reading  50
files, writing  50

files
about  50
reading  50
writing  50

fill_between function
about  176
condition-based plot region, shading  176, 177

financial functions, NumPy
fv  139
irr  139
mirr  139
nper  139
npv  139
pmt  139
pv  139
rate  139

finfo function  161, 162
Fink

about  16
NumPy, installing on Mac OS X with  16

flat attribute  45
defining  102

flatten function  37
float16 type  29
float32 type  29
float64 type  29
floating point

comparing  161, 162
float type  29
floor_divide function  106
fmod function  107, 108
Fourier analysis

about  189
detrended signal, filtering  189, 191

frequencies
shifting  126, 127

frompyfunc function  102
future value

determining  140
fv function  139, 140

G
game show

simulating  129, 130
GCC  16
Gentoo

about  13
NumPy, installing on  13

git  16
golden ratio formula

about  109
calculating  109

GUI installer
downloading  14
NumPy, installing on Mac OS X with  14-16

H
hamming function  146, 147
Hamming window

about  146
calculating  147
plotting  147

hanning function  95, 98
arrays of stock returns, smoothing with  95-98

highest value
calculating  53

histogram function  91, 93
histograms

bell curve, drawing  174
DISH  173
stock price distributions, charting  173

historical volatility  58
horizontal splitting  41
horizontal stacking  38
hsplit function  41
hstack function  40
hypergeometric distribution  129
hypergeometric function  129, 130

I
identity matrix

creating  50
IEEE 754 specification  161
ifft function  126
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ifftshift function  126
imag attribute  45
image processing

about  196
Lena, manipulating  196, 197

insert function  138
installing, NumPy

on Debian  13
on Gentoo  13
on Linux  13, 14
on Mac OS X  14-16
on Mandriva  13
on Red Hat  13
on Ubuntu  13
on Windows  11, 12

installing, Python
on Debian  10
on Mac OS X  10
on Ubuntu  10
on Windows  10

int8 type  29
int16 type  29
int32 type  29
int64 type  29
interest rate

figuring out  143, 144
internal rate of return

determining  142
interp1d class  194, 195
interp2d class  194
interpolation

about  194
in one dimension  194, 195

Inti type  29
inv function  118
IPython

about  20-23
advantages  25
features  20

irr function  139-142
isreal function  97, 98
itemsize attribute  44

K
Kolmogorov Smirnov test  186

L
LAPACK  10
leastsq function  192
left_shift universal function  115
legend function  178
legends

about  178, 179
adding  179
crossover points, annotating  179
crossover points, finding  178
making, transparent  179

len function  76
less function  114
lexsort function  135, 136
LinAlgError exception  119
linalg package  72
linear algebra  117
linear model

price, predicting with  73, 74
linear system

solving  119, 120
linespace function  69, 114
linspace function  110, 112
Linux

NumPy, installing on  13, 14
Linux distributions

about  13
Arch Linux  13
Debian  13
Fedora  13
Gentoo  13
OpenSUSE  13
Slackware  13

Lissajous curves
about  109
drawing  110, 111

loadmat function  181
loadtxt function  50, 51, 59
logarithmic plots

about  174
stock volume, plotting  174, 175

logarithmic returns. See  log returns
log function  57, 58
loglog function  174
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lognormal distribution
about  131
drawing  132, 133

lognormal function  131
log returns  56, 57
loops

avoiding, with vectorize function  93-95
lowest value

calculating  53
lstsq function  74

M
machine epsilon  161
Mac OS X

NumPy, installing on  14-16
Python, installing on  10

MacPorts
NumPy, installing on Mac OS X with  16

Mandriva
NumPy, installing on  13

map function  93
Maple  20
mat function  99-101, 118
Mathematica  20
Matlab  20

about  181
.mat file, loading  182
.mat file, saving  182

Matplotlib
annotations  178
fill_between function  176
legend  178, 179
legends  178, 179
logarithmic plots  174
scatter plots  175

matrices
about  99
creating  100, 101
increasing, from arrays  100
inverting  100, 117, 118
matrix, creating from  101, 102
transposing  100

matrix
creating, from other matrices  101, 102
creating, from string  100

decomposing  122, 123
Fibonacci number, computing with  109

matrix function  99, 108
matrix multiplication  99
max function  53, 54, 63, 65
maximum function  65
maxulp parameter  162
mean function  52, 56, 58
median function  55
Mersenne Twister algorithm  127
metadata  26
min function  53, 54, 63
mirr function  139
mode

determining, for stock returns  90-93
mod function  107, 108
modulo

computing  107, 108
modulo operations

fmod operation  108
mod function  108
% operator  108
remainder function  107

modulus
computing  115

monthly volatility  58
Moore-Penrose pseudo inverse  123
msort function  55, 135
multidimensional arrays

creating  27
indexing  34, 36
slicing  34, 36

N
nanargmax function  138
nanargmin function  138
nbytes attribute  44
ndarray  26, 99
ndarray class  135
ndarray methods  78
ndim attribute  43
net present value

calculating  141
normal distribution

drawing  130, 131
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normal function  130
nper function  139, 143
npv function  139, 141
number

almost equal number, asserting  154, 155
number of periodic payments

determining  143
numerical integration

about  194
Gaussian integral, calculating  194

numerical types, NumPy
about  28
bool  29
complex  29
complex64  29
complex128  29
float  29
float16  29
float32  29
float64  29
int8  29
int16  29
int32  29
int64  29
Inti  29
uint8  29
uint16  29
uint32  29
uint64  29

NumPy
about  9, 117
almost equal arrays, asserting  156, 157
almost equal number, asserting  154, 155
approximately equal arrays, asserting  155, 156
array object  26
arrays  16
arrays, clipping  78, 79
arrays, comparing  157, 158
arrays, compressing  78, 79
arrays, converting to list  46, 47
arrays, dividing  106, 107
array shapes, manipulating  36, 37
arrays of stock returns, smoothing with hanning 

function  95-98
arrays, ordering  158, 159
arrays, splitting  41
arrays, stacking  38

assert functions  153, 154
ATR, calculating  65, 66
bartlett window, plotting  144, 145
binomial numbers  127, 129
bits, twiddling  114, 115
bitwise functions  114, 115
character codes  30, 31
comparison functions  114, 115
complex numbers, sorting  137
correlations, computing for stock returns  82-85
data, fitting to polynomials  85-87
data, loading from CSV files  51
data, summarizing  61-64
data type objects  30
dealing, with dates  58-61
determinant, calculating of matrix  124
dtype constructors  31, 32
eigenvalues, calculating  120, 121
eigenvectors, calculating  120, 121
element, extracting from array  139
equal arrays, asserting  157, 158
exponential moving average, calculating  69, 70
factorial, calculating  79
Fast Fourier transform, calculating  125, 126
features  11
Fibonacci numbers, computing  108, 109
File IO  49
floating point, comparing  161, 162
floats, comparing with ULPs  162
frequencies, shifting  126, 127
future value, determining  140
game show, simulating  129, 130
Hamming window, plotting  147
highest value, calculating  53
installing, on Debian  13
installing, on Gentoo  13
installing, on Linux  13, 14
installing, on Mandriva  13
installing, on Red Hat  13
installing, on Ubuntu  13
installing, on Windows  11, 12
installing, with Fink  16
installing, with MacPorts  16
interest rate, figuring out  143, 144
internal rate of return, calculating  142
linear systems, solving  119, 120
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Lissajous curves, drawing  110, 111
lognormal distribution, drawing  132, 133
loops, avoiding with vectorize function  93-95
lowest value, calculating  53
matrices, creating  100, 101
matrices, inverting  117, 118
matrix, creating from other matrices  101, 102
matrix, decomposing  122, 123
mode, determining for stock returns  90-93
modulo, computing  107, 108
multidimensional array, creating  27
multidimensional arrays, indexing  34, 36
multidimensional arrays, slicing  34, 36
net present value, calculating  141
normal distribution, drawing  130, 131
number of periodic payments, determining  143
numerical types  28, 29
objects, comparing  159, 160
on-balance volume, computing  88-90
one-dimensional array, indexing  33
one-dimensional array, slicing  33
online resources  23, 24
packages  13
periodic payments, calculating  142
present value, retrieving  140
price, predicting with linear model  73, 74
pseudo inverse, computing of matrix  123, 124
reccord data type, creating  33
sawtooth, drawing  113, 114
SciPy  181
searchsorted function, using  138
simple moving average, computing  67, 68
simple statistics, performing  54-56
sorting, lexically  136
sorting routines  135
source code, retrieving for  16
square wave, drawing  111, 112
stock prices, smoothing with Blackman window  

145, 146
stock returns, analyzing  57, 58
strings, comparing  160
trend lines, drawing  75, 77
triangle waves, drawing  113, 114
ufuncs methods, applying on add function  104, 

105
unfuncs, creating  102, 103
URL, for documentation  24

vectors, adding with  17, 18
VWAP, calculating  52

NumPy array
about  16, 26
attributes  43
converting, to list  46, 47
creating  34
elements, selecting  28
example  26
reshaping  34
splitting  41
stacking  38

numpy.dual package  117
NumPy functions  49

Bollinger bands, calculating  71, 72
NumPy installer

downloading  11
NumPy, installing

on Debian  13
on Gentoo  13
on Linux  13, 14
on Mac OS X  14-16
on Mandriva  13
on Red Hat  13
on Ubuntu  13
on Windows  11, 12

numpy.linalg function  119
numpy.linalg package  117, 118
numpysum function  17, 19
numpy.testing package   153

O
objects

comparing  159, 160
on-balance volume

about  88
computing  88-90

one-dimensional array
indexing  33
slicing  33

ones function  67, 68
OpenSUSE  13
optimization

about  191
sine, fitting to  191-193

outer method  105
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P
packages, NumPy

dev-python/numpy  13
numpy  13
python-numpy  13
python-numpy, python-numpy-devel  13

periodic payments
calculating  142

piecewise function  88, 89
pinv function  123
plot function  178
pmt function  139, 142
polyder function  86, 87
polyfit function  85, 87
polynomials

about  85
data, fitting to  85-87

polysub function  98
polyval function  86, 87
positive returns

selecting  57
present value

retrieving  140
print function  25
probability density function  130, 132
prod function  79
pseudo inverse

computing, of matrix  123, 124
ptp function  54
pv function  139, 140
Pylab switch  20
Python

about  9, 153
installing, on Debian  10
installing, on different operating systems  10
installing, on Mac OS X  10
installing, on Ubuntu  10
installing, on Windows  10
vectors, adding with  17

Python 2.4.x  10
Python function

defining  102
Python, installing

on Debian  10
on different operating systems  10
on Mac OS X  10

on Ubuntu  10
on Windows  10

pythonsum function  17

Q
quad function  194
quit() method  20
QQQ

trend, detecting in  187, 188

R
random complex numbers

generating  137
random numbers  127
rate function  139, 143, 144
ravel function  36, 62, 76
real attribute  45
record data type

about  32
creating  33

Red Hat
NumPy, installing on  13

reduceat method  104, 105
reduce method  104
remainder function  107
reshape function  34-37
resize melthod  37
rint function  108
roots function  86, 87
row_stack function  41
row stacking  40
rtol parameter  157

S
sample comparison

stock log returns, comparing  185-187
savemat function  181
savetxt function  50, 63
sawtooth

about  112
drawing  113, 114

scatter plot
about  175
close price, extracting  175
creating  175
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figure, creating  175
grid, creating  175
price return, plotting  175, 176
subplot, adding  175
title, creating  175
volume, extracting  175
volume return, plotting  175, 176

SciKits  185
scikits.statsmodels.stattools  185
SciPy

about  9, 117, 181
image processing  196
online resources  23, 24
scipy.stats  183

scipy.fftpack module  189
SciPy forum

URL  24
scipy.interpolate function  194
scipy.interpolate module  195
scipy.io package  181
scipy.ndimage module  197
scipy.optimize module  193
scipy.signal module  187
scipy.stats

about  183
data generation, improving  185
random values, analyzing  183-185

scipy.stats.norm.rvs function  185
search function, NumPy

argmax  138
argmin  138
argwhere  138
extract  138
nanargmax  138
searchsorted  138

searchsorted function  
about  138
using  138

select function  97, 98
semilogx function  174
semilogy function  174
signal processing

about  187
trend detecting, in QQQ  187, 189

sign function  88, 89
simple moving average

about  66

computing  67, 68
simple returns  57
simple statistics

performing  54-56
simulation  93
sinc function  195
sin function  110-114
singular value decomposition  121
size attribute  44
Slackware  13
slices

selecting  34
smaller matrices

creating  101
smoothing  95
solve function  119, 120
sort_complex function  135, 137
sorted array

creating  138
sort function  91, 135
sorting routines, NumPy

argsort  135
lexsort  135
msort  135
sort  135
sort_complex  135

sort method  135
split function  41, 42, 62
splitting  41
splitting, types

depth  42
horizontal  41
vertical  42

sqrt function  58
square wave

about  111
drawing  111, 112

stacking  38
stacking, types

column  40
depth  39
horizontal  38
row  40
vertical  39

stack overflow software development forum
URL  24
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statistics
about  54
performing  54-56

std function  57, 58
stock log returns, comparing

histograms plotting, Matplotlib used  186
Jarque Bera test  186
Kolmogorov Smirnov test  186
log returns, calculating  185
quotes, downloading  185

stock prices
smoothing, with Blackman window  145, 146

stock returns
about  56
analyzing  57, 58
correlation, computing for  82-85
mode, determining for  90-93
smoothing  96

str attribute  32
strings

comparing  160
matrix, creating from  100

strip_zeroes function  98
sum function  113
summarize function  63, 64
svd function  122

T
take function  60, 63
T attribute  44
Taylor expansion  85
Time weighted average price. See  TWAP
tolist function  46
trace function  83, 85
transpose function  44
trend detecting, in QQQ

date, formatter  188
diagram  189
figure  188
locators, creating  188
quotes, downloading  187
signal, detrending  188
subplot  188
X axis labels  188

trend lines
about  74
drawing  75, 77

triangle waves
about  112
drawing  113, 114

trim_zeros function  98
true_divide function  106
TWAP

computing  52

U
Ubuntu

NumPy, installing on  13
Python, installing on  10

ufunc methods
applying, on add function  104, 105

ufuncs
about  99, 102
creating  102, 103
methods  103

ufuncs, methods
about  103
accumulate  103, 104
outer  103, 105
reduce  103, 104
reduceat  103-105

uint8 type  29
uint16 type  29
uint32 type  29
uint64 type  29
ULP

about  161
floats, comparing with  162

ultimate_answer function  102
unique function  90
Unit of Least Precision. See  ULP
unit testing  153
unit tests  153
universal functions. See  ufuncs
unpack parameter  51
usecols argument  51, 53
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V
VALE  82
value range  53
vectorize function  

about  93
loops, avoiding with  93-95

vectors
about  26
adding, NumPy used  17, 18
adding, Python used  17

vertical splitting  42
vertical stacking  39
Volume weighted average price. See  VWAP
vsplit function  41, 42
vstack function  39
VWAP

about  51
calculating  52

W
weekday method  59
weekly summary  61

weights parameter  52
where function  57, 60, 75
where parameter  176
Window functions

about  144
barlett  144
blackman  144, 145
hamming  144, 146
hanning  144
kaiser  144

Windows
NumPy, installing on  11, 12
Python, installing on  10

Windows Python installer
URL  10

Z
zeros_like function  102, 103
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