

NumPy 1.5
Beginner's Guide

An action-packed guide for the easy-to-use, high
performance, Python based free open source NumPy
mathematical library using real-world examples

Ivan Idris

 BIRMINGHAM - MUMBAI

NumPy 1.5
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2011

Production Reference: 1311011

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-530-6

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author

Ivan Idris

Reviewers

Lorenzo Bolla

Seth Brown

John Douglas

Finn Arup Nielsen

Ryan R. Rosario

Stefan Scherfke

Senior Acquisition Editor

Usha Iyer

Development Editor

Hyacintha D'Souza

Technical Editors

Apoorva Bolar

Aaron Rosario

Copy Editor

Brandt D'Mello

Project Coordinator

Srimoyee Ghoshal

Proofreader

Stephen Swaney

Indexer

Tejal Daruwale

Graphics

Valentina D'silva

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Ivan Idris has a degree in Experimental Physics and several certifications (SCJP, SCWCD and
other). His graduation thesis had a strong emphasis on Applied Computer Science. After
graduating, Ivan worked for several companies as Java developer, Datawarehouse developer,
and Test Analyst.

More information and a blog with a few NumPy examples can be found on ivanidris.net

I would like to take this opportunity to thank the reviewers and the team at
Packt for making this book possible.

Also, thanks goes to my teachers, professors and colleagues who taught me
about science and programming.

Last, but not least; I would like to acknowledge my parents, family, and
friends for their support.

About the Reviewers

Lorenzo Bolla works as Software Engineer in a successful start-up in London. His main
interests are large scale web applications, numerical modelling, and functional programming.

Seth Brown is a scientist and educator with a Ph.D. in genetics/genomics from Dartmouth
Medical School. He is currently employed as a bioinformatician working on deciphering novel
mechanisms of human gene regulation. He has used the Python programming language in
his research since 2006. He discusses his research and computational methods in his
blog — drbunsen.org.

Finn Arup Nielsen is a senior researcher at the Technical University of Denmark. He has
a background in machine learning and has written a PhD thesis about neuroinformatics
with neuroimaging data. He has previously been using the Matlab and Perl programming
languages for data processing and analysis of complex data from brain science and the
Internet, but now uses more Python. Nielsen works within neuroinformatics and social
media mining projects funded by the Lundbeck Foundation and The Danish Council for
Strategic Research.

Ryan Rosario is a Doctoral Candidate at the University of California, Los Angeles. He
works in industry as a Data Scientist and he enjoys turning large quantities of massive,
messy data into gold. Ryan is heavily involved in the open-source community, particularly R,
Python, Hadoop, and Machine Learning. He has also contributed code to various Python
and R projects. Ryan maintains a blog dedicated to Data Science and related topics at
http://www.bytemining.com.

Stefan Scherfke studied Computer Science with an emphasis on Environmental Computer
Science at the Carl von Ossietzky University Oldenburg, Germany and received his Diplom
(equiv. to M.Sc.) in 2009. Since then, he has been working in the R&D Division Energy at
OFFIS—Institute for Information Technology.

In 2008, after learning various other languages (including Java, C/C++ and PHP), Stefan
discovered Python and instantly fell in love with it. He has been using Python mainly to
implement various simulations within the energy domain, but also to run his website and
day-to-day scripting needs. He uses libraries like NumPy, SciPy, Matplotlib, SimPy, PyQt4,
and Django for this. He also likes py.test and mock.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy & paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

To my family and friends

Table of Contents
Preface 1

Chapter 1: NumPy Quick Start 9
Python 9
Time for action – installing Python on different operating systems 10
Windows 10
Time for action – installing NumPy on Windows 11
Linux 13
Time for action – installing NumPy on Linux 13
Mac OS X 14
Time for action – installing NumPy on Mac OS X with a GUI installer 14
Time for action – installing NumPy with MacPorts or Fink 16
Building from source 16
Vectors 16
Time for action – adding vectors 17
IPython—an interactive shell 20
Online resources and help 23
Summary 24

Chapter 2: Beginning with NumPy Fundamentals 25
NumPy array object 26
Time for action – creating a multidimensional array 27

Selecting elements 28
NumPy numerical types 28
Data type objects 30
Character codes 30
dtype constructors 31
dtype attributes 32

Time for action – creating a record data type 32

Table of Contents

[ii]

One-dimensional slicing and indexing 33
Time for action – slicing and indexing multidimensional arrays 34
Time for action – manipulating array shapes 36

Stacking 38
Time for action – stacking arrays 38

Splitting 41
Time for action – splitting arrays 41

Array attributes 43
Time for action – converting arrays 46
Summary 47

Chapter 3: Get into Terms with Commonly Used Functions 49
File I/O 49
Time for action – reading and writing files 50

Identity matrix creation 50
CSV files 50
Time for action – loading from CSV files 51
Volume weighted average price 51
Time for action – calculating volume weighted average price 52

The mean function 52
Time weighted average price 52

Value range 53
Time for action – finding highest and lowest values 53
Statistics 54
Time for action – doing simple statistics 54
Stock returns 56
Time for action – analyzing stock returns 57
Dates 58
Time for action – dealing with dates 58
Weekly summary 61
Time for action – summarizing data 61
Average true range 65
Time for action – calculating the average true range 65
Simple moving average 66
Time for action – computing the simple moving average 67
Exponential moving average 68
Time for action – calculating the exponential moving average 69
Bollinger bands 70
Time for action – enveloping with Bollinger bands 71
Linear model 72
Time for action – predicting price with a linear model 73

Table of Contents

[iii]

Trend lines 74
Time for action – drawing trend lines 75
Methods of ndarray 78
Time for action – clipping and compressing arrays 78
Factorial 79
Time for action – calculating the factorial 79
Summary 80

Chapter 4: Convenience Functions for Your Convenience 81
Correlation 82
Time for action – trading correlated pairs 82
Polynomials 85
Time for action – fitting to polynomials 85
On-balance volume 88
Time for action – balancing volume 88
The mode 90
Time for action – determining the mode of stock returns 90
Simulation 93
Time for action – avoiding loops with vectorize 93
Smoothing 95
Time for action – smoothing with the hanning function 95
Summary 98

Chapter 5: Working with Matrices and ufuncs 99
Matrices 99
Time for action – creating matrices 100
Creating a matrix from other matrices 101
Time for action – creating a matrix from other matrices 101
Universal functions 102
Time for action – creating universal function 102
Universal function methods 103
Time for action – applying the ufunc methods on add 104
Arithmetic functions 105
Time for action – dividing arrays 106
Modulo operation 107
Time for action – computing the modulo 107
Fibonacci numbers 108
Time for action – computing Fibonacci numbers 108
Lissajous curves 109
Time for action – drawing Lissajous curves 110
Square waves 111
Time for action – drawing a square wave 111

Table of Contents

[iv]

Sawtooth and triangle waves 112
Time for action – drawing sawtooth and triangle waves 113
Bitwise and comparison functions 114
Time for action – twiddling bits 114
Summary 116

Chapter 6: Move Further with NumPy Modules 117
Linear algebra 117
Time for action – inverting matrices 117
Solving linear systems 119
Time for action – solving a linear system 119
Finding eigenvalues and eigenvectors 120
Time for action – determining eigenvalues and eigenvectors 120
Singular value decomposition 121
Time for action – decomposing a matrix 122
Pseudo inverse 123
Time for action – computing the pseudo inverse of a matrix 123
Determinants 124
Time for action – calculating the determinant of a matrix 124
Fast Fourier transform 124
Time for action – calculating the Fourier transform 125
Shifting 126
Time for action – shifting frequencies 126
Random numbers 127
Time for action – gambling with the binomial 127
Hypergeometric distribution 129
Time for action – simulating a game show 129
Continuous distributions 130
Time for action – drawing a normal distribution 130
Lognormal distribution 131
Time for action – drawing the lognormal distribution 132
Summary 133

Chapter 7: Peeking Into Special Routines 135
Sorting 135
Time for action – sorting lexically 136
Complex numbers 137
Time for action – sorting complex numbers 137
Searching 138
Time for action – using searchsorted 138
Array elements extraction 139
Time for action – extracting elements from an array 139

Table of Contents

[v]

Financial functions 139
Time for action – determining future value 140
Present value 140
Time for action – getting the present value 140
Net present value 141
Time for action – calculating the net present value 141
Internal rate of return 141
Time for action – determining the internal rate of return 142
Periodic payments 142
Time for action – calculating the periodic payments 142
Number of payments 143
Time for action – determining the number of periodic payments 143
Interest rate 143
Time for action – figuring out the rate 143
Window functions 144
Time for action – plotting the Bartlett window 144
Blackman window 145
Time for action – smoothing stock prices with the Blackman window 145
Hamming window 146
Time for action – plotting the Hamming window 147
Kaiser window 148
Time for action – plotting the Kaiser window 148
Special mathematical functions 149
Time for action – plotting the modified Bessel function 149
Sinc 150
Time for action - plotting the sinc function 150
Summary 151

Chapter 8: Assure Quality with Testing 153
Assert functions 153
Time for action – asserting almost equal 154
Approximately equal arrays 155
Time for action – asserting approximately equal 155
Almost equal arrays 156
Time for action – asserting arrays almost equal 156
Equal arrays 157
Time for action – comparing arrays 157
Ordering arrays 158
Time for action – checking the array order 158
Objects comparison 159
Time for action – comparing objects 159

Table of Contents

[vi]

String comparison 160
Time for action – comparing strings 160
Floating point comparisons 161
Time for action – comparing with assert_array_almost_equal_nulp 161
Comparison of floats with more ULPs 162
Time for action – comparing using maxulp of 2 162
Summary 163

Chapter 9: Plotting with Matplotlib 165
Simple plots 165
Time for action – plotting a polynomial function 166
Plot format string 167
Time for action – plotting a polynomial and its derivative 167
Subplots 168
Time for action – plotting a polynomial and its derivatives 168
Finance 170
Time for action – plotting a year's worth of stock quotes 171
Histograms 172
Time for action – charting stock price distributions 173
Logarithmic plots 174
Time for action – plotting stock volume 174
Scatter plots 175
Time for action – plotting price and volume returns with scatter plot 175
Fill between 176
Time for action – shading plot regions based on a condition 176
Legend and annotations 178
Time for action – using legend and annotations 178
Summary 180

Chapter 10: When NumPy is Not Enough: SciPy and Beyond 181
Matlab and Octave 181
Time for action – saving and loading a .mat file 182
Statistics 183
Time for action – analyzing random values 183
Samples comparison and SciKits 185
Time for action – comparing stock log returns 185
Signal processing 187
Time for action – detecting a trend in QQQ 187
Fourier analysis 189

Table of Contents

[vii]

Time for action – filtering a detrended signal 189
Optimization 191
Time for action – fitting to a sine 191
Numerical integration 194
Time for action – calculating the Gaussian integral 194
Interpolation 194
Time for action – interpolating in one dimension 194
Image processing 196
Time for action – manipulating Lena 196
Summary 197

Pop Quiz Answers 199
Chapter 1, NumPy Quick Start 199
Chapter 2, Beginning with NumPy Fundamentals 199
Chapter 3, Get into Terms with Commonly Used Functions 199
Chapter 4, Convenience Functions for Your Convenience 199
Chapter 5, Working with Matrices and ufuncs 200
Chapter 6, Move Further with NumPy Modules 200
Chapter 7, Peeking into Special Routines 200
Chapter 8, Assured Quality with Testing 200
Chapter 9, Plotting with Matplotlib 200
Chapter 10, When NumPy is not enough SciPy and Beyond 200

Index 201

Preface
Scientists, engineers, and quantitative data analysts face many challenges nowadays.
Data scientists want to be able to do numerical analysis of large datasets with minimal
programming effort. They want to write readable, efficient, and fast code, that is as close
as possible to the mathematical language package they are used to. A number of accepted
solutions are available in the scientific computing world.

The C, C++, and Fortran programming languages have their benefits, but they are not
interactive and are considered too complex by many. The common commercial alternatives
are, among others, Matlab, Maple, and Mathematica. These products provide powerful
scripting languages, however, they are still more limited than any general purpose
programming language. There are other open source tools similar to Matlab such as R, GNU
Octave, and Scilab. Obviously, they also lack the power of a language such as Python.

Python is a popular general purpose programming language widely used by in the scientific
community. You can access legacy C, Fortran, or R code easily from Python. It is object-
oriented and considered more high-level than C or Fortran. Python allows you to write
readable and clean code with minimal fuss. However, it lacks a Matlab equivalent out of the
box. That's where NumPy comes in. This book is about NumPy and related Python libraries
such as SciPy and Matplotlib.

What is NumPy?
NumPy (from Numerical Python) is an open source Python library for scientific computing.
NumPy lets you work with arrays and matrices in a natural way. The library contains
a long list of useful mathematical functions including some for linear algebra, Fourier
transformation, and random number generation routines. LAPACK, a linear algebra library,
is used by the NumPy linear algebra module if you have LAPACK installed on your system;
otherwise NumPy provides its own implementation. LAPACK is a well known library originally
written in Fortran—which Matlab relies on as well. In a sense, NumPy replaces some of the
functionality of Matlab and Mathematica, allowing rapid interactive prototyping.

Preface

[2]

We will not be discussing NumPy from a developing contributor's perspective, but more from
a user's perspective. NumPy is a very active project and has a lot of contributors. Maybe, one
day you will be one of them!

History
NumPy is based on its predecessor, Numeric. Numeric was first released in 1995 and has
a deprecated status now. Neither Numeric nor NumPy made it into the standard Python
library for various reasons. However, you can install NumPy separately. More about that
in the next chapter.

In 2001, a number of people inspired by Numeric created SciPy—an open source Python
scientific computing library that provides functionality similar to that of Matlab, Maple, and
Mathematica. Around this time, people were growing increasingly unhappy with Numeric.
Numarray was created as alternative for Numeric. Numarray is currently also deprecated.
Numarray was better in some areas than Numeric, but worked very differently. For that
reason, SciPy kept on depending on the Numeric philosophy and the Numeric array object.
As is customary with new "latest and greatest" software, the arrival of Numarray led to
the development of an entire whole ecosystem around it with a range of useful tools.
Unfortunately, the SciPy community could not enjoy the benefits of this development. It is
quite possible that some Pythonista has decided to neither choose neither one nor the
other camp.

In 2005, Travis Oliphant, an early contributor to SciPy, decided to do something about
this situation. He tried to integrate some of the Numarray features into Numeric. A
complete rewrite took place that culminated into the release of NumPy 1.0 in 2006. At
this time, NumPy has all of the features of Numeric and Numarray and more. Upgrade
tools are available to facilitate the upgrade from Numeric and Numarray. The upgrade is
recommended since Numeric and Numarray are not actively supported any more.

Originally the NumPy code was part of SciPy. It was later separated and is now used by SciPy
for array and matrix processing.

Why use NumPy?
NumPy code is much cleaner than "straight" Python code that tries to accomplish the
same task. There are fewer loops required because operations work directly on arrays
and matrices. The many convenience and mathematical functions make life easier as well.
The underlying algorithms have stood the test of time and have been designed with high
performance in mind.

Preface

[3]

NumPy's arrays are stored more efficiently than an equivalent data structure in base Python
such as a list of lists. Array I/O is significantly faster too. The performance improvement
scales with the number of elements of an array. It really pays off to use NumPy for large
arrays. Files as large as several terabytes can be memory-mapped to arrays leading to
optimal reading and writing of data. The drawback of NumPy arrays is that they are more
specialized than plain lists. Outside of the context of numerical computations, NumPy arrays
are less useful. The technical details of NumPy arrays will be discussed in later chapters.

Large portions of NumPy are written in C. That makes NumPy faster than pure Python
code. A NumPy C API exists as well. It allows further extension of the functionality with
the help of the C language of NumPy. The C API falls outside the scope of the book. Finally,
since NumPy is open source, you get all the added advantages. The price is the lowest
possible—free as in 'beer'. You don't have to worry about licenses every time somebody
joins your team or you need an upgrade of the software. The source code is available to
everyone. This, of course, is beneficial to the code quality.

Limitations of NumPy
There is one important thing to know if you are planning to create Google App Engine
applications. NumPy is not supported within the Google App Engine sandbox. NumPy is
deemed "unsafe" partly because it is written in C.

If you are a Java programmer, you may be interested in Jython, the Java implementation of
Python. In that case, I have bad news for you. Unfortunately, Jython runs on the Java Virtual
Machine and cannot access NumPy because NumPy's modules are mostly written in C. You
could say that Jython and Python are from two totally different worlds, although they do
implement the same specification.

The stable release of NumPy, at the time of writing, supported Python 2.4 to 2.6.x, and now
also supports Python 3.

What this book covers
Chapter 1, NumPy Quick Start, will guide you through the steps needed to install NumPy on
your system and create a basic NumPy application.

Chapter 2, Beginning with NumPy Fundamentals, introduces you to NumPy arrays and
fundamentals.

Chapter 3, Get into Terms with Commonly Used Functions, will teach you about the most
commonly used NumPy functions—the basic mathematical and statistical functions.

Preface

[4]

Chapter 4, Convenience Functions for Your Convenience, will teach you about functions that
make working with NumPy easier. This includes functions that select certain parts of your
arrays, for instance based on a Boolean condition. You will also learn about polynomials and
manipulating the shape of NumPy objects.

Chapter 5, Working with Matrices and ufuncs, covers matrices and universal functions.
Matrices are well known in mathematics and have their representation in NumPy as well.
Universal functions (ufuncs) work on arrays element-by-element or on scalars. ufuncs expect
a set of scalars as input and produce a set of scalars as output.

Chapter 6, Move Further with NumPy Modules, discusses how universal functions can
typically be mapped to mathematical counterparts such as add, subtract, divide, multiply,
and so on. NumPy has a number of basic modules that will be discussed in this chapter.

Chapter 7, Peeking into Special Routines, describes some of the more specialized NumPy
functions. As NumPy users, we sometimes find ourselves having special needs. Fortunately,
NumPy provides for most of our needs.

Chapter 8, Assured Quality with Testing, will teach you how to write NumPy unit tests.

Chapter 9, Plotting with Matplotlib, discusses how NumPy on its own cannot be used to
create graphs and plots. This chapter covers (in-depth) Matplotlib, a very useful Python
plotting library. Matplotlib integrates nicely with NumPy and has plotting capabilities
comparable to Matlab.

Chapter 10, When NumPy is Not Enough: SciPy and Beyond, discuss how SciPy and NumPy
are historically related. This chapter goes into more detail about SciPy. SciPy, as mentioned
in the History section, is a high level Python scientific computing framework built on top of
NumPy. It can be used in conjunction with NumPy.

What you need for this book
To try out the code samples in this book, you will need a recent build of NumPy. This means
that you will need to have one of the Python versions supported by NumPy as well. Some
code samples make use of Matplotlib for illustration purposes. Matplotlib is not strictly
required to follow the examples, but it is recommended that you install it too. The last
chapter is about SciPy and has one example involving SciKits.

Here is a list of software used to develop and test the code examples:

 � Python 2.6

 � NumPy 2.0.0.dev20100915

 � SciPy 0.9.0.dev20100915

Preface

[5]

 � Matplotlib 1.0.0

 � Ipython 0.10

Needless to say, you don't need to have exactly this software and these versions on your
computer. Python and NumPy is the absolute minimum you will need.

Who this book is for
This book is for you the scientist, engineer, programmer, or analyst looking for a high quality
open source mathematical library. Knowledge of Python is assumed. Also, some affinity or at
least interest in mathematics and statistics is required.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Preface

[6]

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use
of the include directive."

A block of code is set as follows:

[def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])
 return c

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])
 return c

Any command-line input or output is written as follows:

sudo apt-get install python

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Preface

[7]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Preface

[8]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
NumPy Quick Start

Let's get started. We will install NumPy on different operating systems and
have a look at some simple code that uses NumPy. The IPython interactive shell
is introduced briefly. As mentioned in the preface, SciPy is closely related to
NumPy, so you will see the SciPy name appearing here and there. At the end of
this chapter, you will find pointers on how to find additional information online
if you get stuck or are uncertain about the best way to solve problems.

In this chapter, we shall:

 � Install Python and NumPy on Windows

 � Install Python and NumPy on Linux

 � Install Python and NumPy on Macintosh

 � Write simple NumPy code

 � Get to know IPython

 � Browse online documentation and resources

Python
NumPy is based on Python, so it is required to have Python installed. On some operating
systems, Python is already installed. You, however, need to check whether the Python
version corresponds with the NumPy version you want to install.

NumPy Quick Start

[10]

Time for action – installing Python on different
operating systems

NumPy has binary installers for Windows, various Linux distributions and Mac OS X. There is
also a source distribution, if you prefer that. You need to have Python 2.4.x or above installed
on your system. We will go through the various steps required to install Python on the
following operating systems:

1. Debian and Ubuntu: Python might already be installed on Debian and Ubuntu but
the development headers are usually not. On Debian and Ubuntu install python and
python-dev with the following commands:

sudo apt-get install python
sudo apt-get install python-dev

2. Windows: The Windows Python installer can be found at www.python.org/
download. On this website, we can also find installers for Mac OS X and source
tarballs for Linux, Unix, and Mac OS X.

3. Mac: Python comes pre-installed on Mac OS X. We can also get Python through
MacPorts, Fink, or similar projects.

We can install, for instance, the Python 2.6 port by running the following command:

sudo port install python26

LAPACK does not need to be present but, if it is, NumPy will detect it and use it
during the installation phase. It is recommended to install LAPACK for serious
numerical analysis.

What just happened?
We installed Python on Debian, Ubuntu, Windows, and the Mac.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Windows
Installing NumPy on Windows is straightforward. You only need to download an installer, and
a wizard will guide you through the installation steps.

Chapter 1

[11]

Time for action – installing NumPy on Windows
Installing NumPy on Windows is necessary but, fortunately, a straightforward task. The
actions we will take are as follows:

1. Download the NumPy installer: Download a NumPy installer for Windows from the
SourceForge website http://sourceforge.net/projects/numpy/files/

Choose the appropriate version. In this example, we chose numpy-1.5.1-win32-
superpack-python2.6.exe.

2. Open the installer: Open the EXE installer by double clicking on it.

3. NumPy features: Now, we see a description of NumPy and its features. Click Next.

NumPy Quick Start

[12]

4. Install Python: If you have Python installed, it should automatically be detected. If
it is not detected, maybe your path settings are wrong. At the end of this chapter,
resources are listed in case you have problems with installing NumPy:

5. Finish the installation: In this example, Python 2.6 was found. Click Next if Python
is found; otherwise, click Cancel and install Python (NumPy cannot be installed
without Python). Click Next. This is the point of no return. Well, kind of, but it is best
to make sure that you are installing to the proper directory and so on and so forth.
Now the real installation starts. This may take a while:

Chapter 1

[13]

What just happened?
We installed NumPy on Windows.

Linux
Installing NumPy on Linux depends on the distribution you have. We will discuss how you
would install NumPy from the command line, although you could probably use graphical
installers; it depends on your distribution (distro).

Time for action – installing NumPy on Linux
Most Linux distributions have NumPy packages. We will go through the necessary steps for
some of the popular Linux distros:

1. Installing NumPy on Red Hat: Run the following instructions from the
command line:

yum install python-numpy

2. Installing NumPy on Mandriva: To install NumPy on Mandriva, run the following
command line instruction:

urpmi python-numpy

3. Installing NumPy on Gentoo: To install NumPy on Gentoo run the following
command line instruction:

sudo emerge numpy

4. Installing NumPy on Debian and Ubuntu: On Debian or Ubuntu, we need to type
the following:

sudo apt-get install python-numpy

The following table gives an overview of the Linux distributions and corresponding NumPy
package names.

Linux distribution Package name

Arch Linux python-numpy

Debian python-numpy

Fedora numpy

Gentoo dev-python/numpy

OpenSUSE python-numpy, python-numpy-devel

Slackware numpy

NumPy Quick Start

[14]

What just happened?
We installed NumPy on various Linux distributions.

Mac OS X
You can install NumPy on the Mac with a graphical installer or from the command-line from
a port manager such as MacPorts or Fink, depending on your preference.

Time for action – installing NumPy on Mac OS X
with a GUI installer

We will install NumPy with a GUI installer.

1. Download the GUI installer: We can get a NumPy installer from the SourceForge
website http://sourceforge.net/projects/numpy/files/. Download
the appropriate DMG file. Usually the latest one is the best:

2. Open the DMG file: Open the DMG file (in this example, numpy-1.5.1-py2.6-
python.org-macosx10.3.dmg):

Chapter 1

[15]

 � Double-click on the icon of the opened box, the one having a subscript that
ends with .mpkg. We will be presented with the welcome screen of the
installer.

 � Click on the Continue button to go to the Read Me screen, where we will be
presented with a short description of NumPy:

 � Continue to the License screen.

NumPy Quick Start

[16]

3. Accept the license: Read the license, click Continue and then the Accept button,
when prompted to accept the license. Continue through the next screens and click
Finish at the end.

What just happened?
We installed NumPy on Mac OS X with a GUI installer.

Time for action – installing NumPy with MacPorts or Fink
Alternatively we can install NumPy through the MacPorts route. It is shown as follows:

1. Installing with MacPorts: Type the following command:

sudo port install py-numpy

2. Installing with Fink: Fink also has packages for NumPy—scipy-core-py24,
scipy-core-py25, and scipy-core-py26. We can install the one for
Python 2.6 with the following package:

fink install scipy-core-py26

What just happened?
We installed NumPy on Mac OS X with MacPorts and Fink.

Building from source
We can retrieve the source code for NumPy with git. This is shown as follows:

git clone git://github.com/numpy/numpy.git numpy

Install /usr/local with the following command:

python setup.py build

sudo python setup.py install --prefix=/usr/local

To build, we need a C compiler such as GCC and the Python header files in the python-dev
or python-devel package.

Vectors
NumPy arrays are more efficient than Python lists, when it comes to numerical operations.
NumPy code requires less explicit loops than equivalent Python code.

Chapter 1

[17]

Time for action – adding vectors
Imagine that we want to add two vectors called a and b. Vector a holds the squares of
integers 0 to n, for instance, if n = 3, then a = (0, 1, 4). Vector b holds the cubes of integers 0
to n, so if n = 3, then b = (0, 1, 8). How would you do that using plain Python? After we come
up with a solution, we will compare it with the NumPy equivalent.

1. Adding vectors using pure Python: The following function solves the vector addition
problem using pure Python without NumPy:

def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []

 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])

 return c

2. Adding vectors using NumPy: Following is a function that achieves the same
with NumPy.

def numpysum(n):
 a = numpy.arange(n) ** 2
 b = numpy.arange(n) ** 3
 c = a + b
 return c

Notice that numpysum() does not need a for loop. Also, we used the arange function
from NumPy that creates a NumPy array for us with integers 0 to n. The arange function
was imported; that is why it is prefixed with numpy.

Now comes the fun part. Remember that it is mentioned in the preface that NumPy is faster
when it comes to array operations. How much faster is Numpy, though? The following
program will show us by measuring the elapsed time in microseconds, for the numpysum and
pythonsum functions. It also prints the last two elements of the vector sum. Let's check that
we get the same answers by using Python and NumPy:

import sys
from datetime import datetime
import numpy

def numpysum(n):
 a = numpy.arange(n) ** 2

NumPy Quick Start

[18]

 b = numpy.arange(n) ** 3
 c = a + b
 return c

def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []

 for i in range(len(a)):
 a[i] = i ** 2
 b[i] = i ** 3
 c.append(a[i] + b[i])

 return c

size = int(sys.argv[1])
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "PythonSum elapsed time in microseconds", delta.microseconds
start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "NumPySum elapsed time in microseconds", delta.microseconds

The output of the program for 1000, 2000, and 3000 vector elements is as follows:

$ python vectorsum.py 1000

The last 2 elements of the sum [995007996, 998001000]

PythonSum elapsed time in microseconds 707

The last 2 elements of the sum [995007996 998001000]

NumPySum elapsed time in microseconds 171

$ python vectorsum.py 2000

The last 2 elements of the sum [7980015996, 7992002000]

PythonSum elapsed time in microseconds 1420

The last 2 elements of the sum [7980015996 7992002000]

NumPySum elapsed time in microseconds 168

Chapter 1

[19]

$ python vectorsum.py 4000

The last 2 elements of the sum [63920031996, 63968004000]

PythonSum elapsed time in microseconds 2829

The last 2 elements of the sum [63920031996 63968004000]

NumPySum elapsed time in microseconds 274

What just happened?
Clearly, NumPy is much faster than the equivalent normal Python code. One thing is certain;
we get the same results whether we are using NumPy or not. However, the result that is
printed differs in representation. Notice that the result from the numpysum function does
not have any commas. How come? Obviously we are not dealing with a Python list but with
a NumPy array. It was mentioned in the preface that NumPy arrays are specialized data
structures for numerical data. We will learn more about NumPy arrays in the next chapter.

Pop Quiz - functioning of arange function
1. What does arange(5) do?

 � Creates a Python list of 5 elements with values 1 to 5.

 � Creates a Python list of 5 elements with values 0 to 4.

 � Creates a NumPy array with values 1 to 5.

 � Creates a NumPy array with values 0 to 4.

 � None of the above.

Have a go hero – continue the analysis
The program we used here to compare the speed of NumPy and regular Python is not very
scientific. We should at least repeat each measurement a couple of times. It would be nice to
be able to calculate some statistics such as average times, and so on. Also, you might want to
show plots of the measurements to friends and colleagues.

Hints to help you can be found throughout this book and in the online
documentation and resources listed at the end of this chapter. NumPy
has, by the way, statistical functions that can calculate averages for you. I
recommend using matplotlib to produce plots.

NumPy Quick Start

[20]

IPython—an interactive shell
Scientists and engineers are used to experimenting. IPython was created by scientists with
experimentation in mind. The interactive environment that IPython provides is viewed by
many as a direct answer to Matlab, Mathematica, and Maple. You can find more information,
including installation instructions, at: http://ipython.org/

IPython is free, open source, and available for Linux, Unix, Mac OS X, and Windows. The
IPython authors only request that you cite IPython in scientific work where IPython was
used. Here is the list of features of IPython:

 � Tab completion

 � History mechanism

 � Inline editing

 � Ability to call external Python scripts with %run

 � Access to system commands

 � Pylab switch

 � Access to Python debugger and profiler

The Pylab switch imports all the Scipy, NumPy, and Matplotlib packages. Without this
switch, we would have to import every package we need ourselves.

All we need to do is enter the following instruction on the command line:

$ ipython -pylab

Python 2.6.1 (r261:67515, Jun 24 2010, 21:47:49)

Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object'. ?object also works, ?? prints more.

 Welcome to pylab, a matplotlib-based Python environment.

 For more information, type 'help(pylab)'.

In [1]: quit()

quit() or Ctrl + D quits the IPython shell. We might want to be able to go back to our
experiments. In IPython, it is easy to save a session for later.

In [1]: %logstart

Activating auto-logging. Current session state plus future input saved.

Chapter 1

[21]

Filename : ipython_log.py

Mode : rotate

Output logging : False

Raw input log : False

Timestamping : False

State : active

Let's say we have the vector addition program that we made in the current directory. We can
run the script as follows:

In [1]: ls

README vectorsum.py

In [2]: %run -i vectorsum.py 1000

As you probably remember, 1000 specifies the number of elements in a vector. The -d switch
of %run starts an ipdb debugger with 'c' the script is started. 'n' steps through the code.
Typing quit at the ipdb prompt exits the debugger.

In [2]: %run -d vectorsum.py 1000

*** Blank or comment

*** Blank or comment

Breakpoint 1 at: /Users/ivanidris/Documents/numpyBeginnersGuide/book/
ch1code/vectorsum.py:3

Enter c at the ipdb> prompt to start your script.

><string>(1)<module>()

ipdb> c

> /Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.
py(3)<module>()

 2

1---> 3 import sys

 4 from datetime import datetime

ipdb> n

>

/Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.
py(4)<module>()

1 3 import sys

----> 4 from datetime import datetime

NumPy Quick Start

[22]

 5 import numpy

ipdb> n

> /Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.
py(5)<module>()

 4 from datetime import datetime

----> 5 import numpy

 6

ipdb> quit

We can also profile our script by passing the -p option to %run.

In [4]: %run -p vectorsum.py 1000

 1058 function calls (1054 primitive calls) in 0.002 CPU seconds

 Ordered by: internal time

ncallstottimepercallcumtimepercallfilename:lineno(function)

1 0.001 0.001 0.001 0.001 vectorsum.py:28(pythonsum)

1 0.001 0.001 0.002 0.002 {execfile}

1000 0.000 0.0000.0000.000 {method 'append' of 'list' objects}

1 0.000 0.000 0.002 0.002 vectorsum.py:3(<module>)

1 0.000 0.0000.0000.000 vectorsum.py:21(numpysum)

3 0.000 0.0000.0000.000 {range}

1 0.000 0.0000.0000.000 arrayprint.py:175(_array2string)

3/1 0.000 0.0000.0000.000 arrayprint.py:246(array2string)

2 0.000 0.0000.0000.000 {method 'reduce' of 'numpy.ufunc' objects}

4 0.000 0.0000.0000.000 {built-in method now}

2 0.000 0.0000.0000.000 arrayprint.py:486(_formatInteger)

2 0.000 0.0000.0000.000 {numpy.core.multiarray.arange}

1 0.000 0.0000.0000.000 arrayprint.py:320(_formatArray)

3/1 0.000 0.0000.0000.000 numeric.py:1390(array_str)

1 0.000 0.0000.0000.000 numeric.py:216(asarray)

2 0.000 0.0000.0000.000 arrayprint.py:312(_extendLine)

1 0.000 0.0000.0000.000 fromnumeric.py:1043(ravel)

2 0.000 0.0000.0000.000 arrayprint.py:208(<lambda>)

1 0.000 0.000 0.002 0.002<string>:1(<module>)

11 0.000 0.0000.0000.000 {len}

2 0.000 0.0000.0000.000 {isinstance}

1 0.000 0.0000.0000.000 {reduce}

Chapter 1

[23]

1 0.000 0.0000.0000.000 {method 'ravel' of 'numpy.ndarray' objects}

4 0.000 0.0000.0000.000 {method 'rstrip' of 'str' objects}

3 0.000 0.0000.0000.000 {issubclass}

2 0.000 0.0000.0000.000 {method 'item' of 'numpy.ndarray' objects}

1 0.000 0.0000.0000.000 {max}

1 0.000 0.0000.0000.000 {method 'disable' of '_lsprof.Profiler'
objects}

This gives us a bit more insight in the workings of our program. In addition, we can now
identify performance bottlenecks. The %hist command shows the commands history.

In [2]: a=2+2

In [3]: a

Out[3]: 4

In [4]: %hist

1: _ip.magic("hist ")

2: a=2+2

3: a

I hope you agree that IPython is a really useful tool!

Online resources and help
When we are in IPython's pylab mode, we can open manual pages for NumPy functions with
the help command. It is not necessary to know the name of a function. We can type a few
characters and then let tab completion do its work. Let's, for instance, browse the available
information for the arange function.

In [2]: help ar<Tab>

arangearccosarccosharcsinarcsinh

arctan arctan2 arctanhargmaxargmin

argsortargwhere around array2string array_equal

array_equivarray_reprarray_splitarray_str arrow

array

In [2]: help arange

Another option is to put a question mark behind the function name.

In [3]: arange?

NumPy Quick Start

[24]

The main documentation website for NumPy and SciPy is at http://docs.scipy.org/
doc/. Through this webpage, we can browse the NumPy reference at http://docs.
scipy.org/doc/numpy/reference/ and the user guide as well as several tutorials.

NumPy has a wiki with lots of documentation at http://docs.scipy.org/numpy/
Front%20Page/.

The NumPy and SciPy forum can be found at http://ask.scipy.org/en.

The popular Stack Overflow software development forum has hundreds of questions
tagged "numpy". To view them, go to http://stackoverflow.com/questions/
tagged/numpy.

If you are really stuck with a problem or you want to be kept informed of NumPy
development, you can subscribe to the NumPy discussion mailing list. The e-mail address
is numpy-discussion@scipy.org. The number of e-mails per day is not too high and there
is almost no spam to speak of. Most importantly, developers actively involved with NumPy
also answer questions asked on the discussion group. The complete list can be found at
http://www.scipy.org/Mailing_Lists.

For IRC users, there is an IRC channel on irc.freenode.net. The channel is called #scipy,
but you can also ask NumPy questions since SciPy users also have knowledge of NumPy, as
SciPy is based on NumPy. There are at least 50 members on the scipy channel at all times.

Summary
In this chapter, we installed NumPy. We got a vector addition program working and
convinced ourselves that NumPy has superior performance. We were introduced to the
IPython interactive shell. In addition, we explored the available NumPy documentation
and online resources.

In the next chapter, we will take a look under the hood and explore some fundamental
concepts including arrays and data types.

2
Beginning with NumPy Fundamentals

After installing NumPy and getting some code to work, it's time to cover
NumPy basics.

The topics we shall cover in this chapter are:

 � Data types

 � Array types

 � Type conversions

 � Array creation

 � Indexing

 � Slicing

 � Shape manipulation

Before we start, let me make a few remarks about the code examples in this chapter.
The code snippets in this chapter show input and output from several IPython sessions.
Recall that IPython was introduced in the previous chapter as the interactive Python shell
of choice for scientific computing. The advantages of IPython are pylab switch of many
scientific computing Python packages, including NumPy, and the fact that it is not necessary
to explicitly call the print function to display variable values. However, the source code
delivered alongside the book is regular Python code that uses imports and print statements.

Beginning with NumPy Fundamentals

[26]

NumPy array object
NumPy has a multi-dimensional array object called ndarray.It consists of two parts:

1. The actual data

2. Some metadata describing the data

The majority of array operations leave the raw data untouched. The only aspect that changes
is the metadata.

We have already learned, in the previous chapter, how to create an array using the arange
function. Actually, we created a one-dimensional array that contained a set of numbers.
ndarray can have more than one dimension.

The NumPy array is homogeneous—the items in the array have to be of the same type. The
advantage is that, if we know that the items in the array are of the same type, then it is easy
to determine the storage size required for the array.

NumPy arrays are indexed just like in Python, starting from 0. Data types are represented by
special objects. These objects will be discussed comprehensively in this chapter.

We will create an array with the arange function again. Here's how to get the data type of
an array:

In: a = arange(5)
In: a.dtype
Out: dtype('int64')

The data type of array a is int64 (at least on my machine), but you may get int32 as
output if you are using 32-bit Python. In both cases, we are dealing with integers (64-bit or
32-bit). Besides the data type of an array, it is important to know its shape. The following
diagram will give us a better understanding of a NumPy array object:

ndarray

Dtype

Shape

The example in Chapter 1, NumPy Quick Start, demonstrated how to create a vector
(actually, a one-dimensional NumPy array). A vector is commonly used in mathematics but,
most of the time, we need higher-dimensional objects. Let's determine the shape of the
vector we created a few minutes ago:

In [4]: a
Out[4]: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)

Chapter 2

[27]

As you can see, the vector has five elements with values ranging from 0 to 4. The shape
attribute of the array is a tuple, in this case a tuple of 1 element, which contains the length in
each dimension.

Time for action – creating a multidimensional array
Now that we know how to create a vector, we are ready to create a multidimensional NumPy
array. After we create the matrix, we would again want to display its shape and data type.

1. Create a multidimensional array.

2. Show the array shape and data type:

In: m = array([arange(2), arange(2)])
In: m
Out:
array([[0, 1],
 [0, 1]])
In: m.shape
Out: (2, 2)

What just happened?
We created a 2-by-2 array with the arange function we have come to trust and love.
Without any warning, the array function appeared on the stage.

The array function creates an array from an object that you give to it. The object needs
to be array-like, for instance, a Python list. In the preceding example, we passed in a list of
arrays. The object is the only required argument of the array function. NumPy functions
tend to have a lot of optional arguments with predefined defaults.

Pop quiz – the shape of ndarray
1. How is the shape of an ndarray stored?

a. It is stored in a comma-separated string.

b. It is stored in a list.

c. It is stored in a tuple.

Beginning with NumPy Fundamentals

[28]

Have a go hero – create a 3-by-3 matrix
It shouldn't be too hard now to create a 3-by-3 matrix. Give it a go and check whether the
array shape is as expected.

Selecting elements
From time to time, we will want to select a particular element of an array. We will take a look
at how to do this, but first, let's create a 2-by-2 matrix again:

In: a = array([[1,2],[3,4]])
In: a
Out:
array([[1, 2],
 [3, 4]])

The matrix was created this time by passing the array function a list of lists. We will now
select each item of the matrix one-by-one. Remember, the indices are numbered starting
from 0.

In: a[0,0]
Out: 1
In: a[0,1]
Out: 2
In: a[1,0]
Out: 3
In: a[1,1]
Out: 4

As you can see, selecting elements of the array is pretty simple. For the array a, we just use
the notation a[m,n] , where m and n are the indices of the item in the array.

[0,0] [0,1]

[1,0] [1,1]

NumPy numerical types
Python has an integer type, a float type, and a complex type, however, this is not enough for
scientific computing and, for this reason, NumPy has a lot more data types. In practice, we
need even more types with varying precision and, therefore, different memory size of the
type. The majority of the NumPy numerical types end with a number. This number indicates
the number of bits associated with the type. The following table (adapted from the NumPy
user guide) gives an overview of NumPy numerical types:

Chapter 2

[29]

Type Description

bool Boolean (True or False) stored as a bit

inti Platform integer (normally either int32 or int64)

int8 Byte (-128 to 127)

int16 Integer (-32768 to 32767)

int32 Integer (-2 ** 31 to 2 ** 31 -1)

int64 Integer (-2 ** 63 to 2 ** 63 -1)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 2 ** 32 - 1)

uint64 Unsigned integer (0 to 2 ** 64 - 1)

float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

float64 or float Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

complex64 Complex number, represented by two 32-bit floats (real and
imaginary components)

complex128 or
complex

Complex number, represented by two 64-bit floats (real and
imaginary components)

For each data type, there exists a corresponding conversion function:

In: float64(42)
Out: 42.0
In: int8(42.0)
Out: 42
In: bool(42)
Out: True
In: bool(42.0)
Out: True
In: float(True)
Out: 1.0

Many functions have a data type argument, which is often optional:

In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

Beginning with NumPy Fundamentals

[30]

It is important to know that you are not allowed to convert a complex number into an
integer. Trying to do that triggers a TypeError. This is shown as follows:

In: int(42.0 + 1.j)

TypeError Traceback (most recent call
last)
TypeError: can't convert complex to int; use int(abs(z))

The same goes for conversion of a complex number into a float. By the way, the .j part is
the imaginary coefficient of the complex number. See the following code:

In: float(42.0 + 1.j)

TypeError Traceback (most recent call
last)
TypeError: can't convert complex to float; use abs(z)

Data type objects
Data type objects are instances of the numpy.dtype class. Once again, arrays have a data
type. To be precise, every element in a NumPy array has the same data type. The data type
object can tell you the size of the data in bytes. The size in bytes is given by the itemsize
attribute of the dtype class:

In: a.dtype.itemsize
Out: 8

The following diagram gives us a better understanding of data type objects:

dtype

itemsize

byteorder

Character codes
Character codes are included for backward compatibility with Numeric. Numeric is the
predecessor of NumPy. Their use is not recommended, but the codes are provided here
because they pop up in several places. You should instead use dtype objects.

Chapter 2

[31]

Type Character
code

integer i

Unsigned integer u

Single precision float f

Double precision float d

bool b

complex D

string S

unicode U

Void V

Look at the following code to create an array of single precision floats:

In: arange(7, dtype='f')
Out: array([0., 1., 2., 3., 4., 5., 6.], dtype=float32)
Likewise this creates an array of complex numbers
In: arange(7, dtype='D')
Out: array([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j,
6.+0.j])

dtype constructors
We have a variety of ways to create data types. Take the case of floating point data:

 � We can use the general Python float:

In: dtype(float)
Out: dtype('float64')

 � We can specify a single precision float with a character code:

In: dtype('f')
Out: dtype('float32')

 � We can use a double precision float character code:

In: dtype('d')
Out: dtype('float64')

 � We can give the data type constructor a two-character code. The first character
signifies the type; the second character is a number specifying the number of
bytes in the type:

In: dtype('f8')
Out: dtype('float64')

Beginning with NumPy Fundamentals

[32]

A listing of all full data type names can be found in sctypeDict.keys():

In: dtype('Float64')
Out: dtype('float64')

dtype attributes
The dtype class has a number of useful attributes. For example, we can get information
about the character code of a data type through the attributes of dtype:

In: t = dtype('Float64')
In: t.char
Out: 'd'

The type attribute corresponds to the type of object of the array elements:

In: t.type
Out: <type 'numpy.float64'>

The str attribute of dtype gives a string representation of the data type. It starts with a
character representing endianness, if appropriate, then a character code, followed by a
number corresponding to the number of bytes that each array item requires. Endianness,
here, means the way bytes are ordered within a 32 or 64-bit word. In big-endian order, the
most significant byte is stored first. In little-endian order, the least significant byte is stored
first.

In: t.str
Out: '<f8'

dtype

str

type

char

Time for action – creating a record data type
The record data type is a heterogeneous data type—think of it as representing a row in a
spreadsheet or a database. To give an example of a record data type, we will create a record
for a shop inventory. The record contains the name of the item, a 40-character string, the
number of items in the store represented by a 32-bit integer and, finally, a price represented
by a 32-bit float. The following steps show how to create a record data type:

Chapter 2

[33]

1. Create the record:

In: t = dtype([('name', str_, 40), ('numitems', int32), ('price',
float32)])
In: t
Out: dtype([('name', '|S40'), ('numitems', '<i4'), ('price',
'<f4')])

2. View the type (we can view the type of a field as well):

In: t['name']
Out: dtype('|S40')

If you don't give the array function a data type, it will assume that it is dealing with floating
point numbers. To create the array now, we really have to specify the data type; otherwise,
we will get a TypeError:

In: itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13,
2.72)], dtype=t)
In: itemz[1]
Out: ('Butter', 13, 2.7200000286102295)

What just happened?
We created a record data type, which is a heterogeneous data type. The record contained a
name as a character string, a number as an integer and a price represented by a float.

One-dimensional slicing and indexing
Slicing of one-dimensional NumPy arrays works just like slicing of Python lists. We can select
a piece of an array from index 3 to 7 that extracts the elements 3 through 6:

In: a = arange(9)
In: a[3:7]
Out: array([3, 4, 5, 6])

We can select elements from index 0 to 7 with a step of 2:

In: a[:7:2]
Out: array([0, 2, 4, 6])

Similarly as in Python, we can use negative indices and reverse the array:

In: a[::-1]
Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])

Beginning with NumPy Fundamentals

[34]

Time for action – slicing and indexing multidimensional arrays
An ndarray supports slicing over multiple dimensions. For convenience, we refer to many
dimensions at once, with an ellipsis.

1. Create an array and reshape it: To illustrate, we will create an array with the
arange function and reshape it:

In: b = arange(24).reshape(2,3,4)
In: b.shape
Out: (2, 3, 4)
In: b
Out:
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

The array b has 24 elements with values 0 to 23 and we reshaped it to be a 2-by-
3-by-4, three-dimensional array. We can visualize this as a two-story building with
12 rooms on each floor, 3 rows and 4 columns. As you have probably guessed, the
reshape function changes the shape of an array. You give it a tuple of integers,
corresponding to the new shape. If the dimensions are not compatible with the
data, an exception is thrown.

2. Selecting a single cell: We can select a single room by using its three coordinates,
namely, the floor, column, and row. For example, the room on the first floor, in the
first row, and in the first column (you can have floor 0 and room 0—it's just a matter
of convention) can be represented by:

In: b[0,0,0]
Out: 0

3. Selecting slices: If we don't care about the floor, but still want the first column and
row, we replace the first index by a : (colon) because we just need to specify the
floor number and omit the other indices:

In: b[:,0,0]
Out: array([0, 12])
This selects the first floor
In: b[0]
Out:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

Chapter 2

[35]

We could also have written:

In: b[0, :, :]
Out:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

An ellipsis replaces multiple colons, so, the preceding code is equivalent to:

In: b[0, ...]
Out:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

Further, we get the second row on the first floor with:

In: b[0,1]
Out: array([4, 5, 6, 7])

4. Using steps to slice: Furthermore, we can also select each second element of this
selection:

In: b[0,1,::2]
Out: array([4, 6])

5. Using ellipsis to slice: If we want to select all the rooms on both floors that are in
the second column, regardless of the row, we will type the following code snippet:

In: b[...,1]
Out:
array([[1, 5, 9],
 [13, 17, 21]])

Similarly, we can select all the rooms on the second row, regardless of floor and
column, by writing the following code snippet:

In: b[:,1]
Out:
array([[4, 5, 6, 7],
 [16, 17, 18, 19]])

If we want to select rooms on the ground floor second column, then type the
following code snippet:

In: b[0,:,1]
Out: array([1, 5, 9])

Beginning with NumPy Fundamentals

[36]

6. Using negative indices: If we want to select the first floor, last column, then type the
following code snippet:

In: b[0,:,-1]
Out: array([3, 7, 11])

If we want to select rooms on the ground floor, last column reversed, then type the
following code snippet:

In: b[0,::-1, -1]
Out: array([11, 7, 3])

Every second element of that slice:

In: b[0,::2,-1]
Out: array([3, 11])

The command that reverses a one-dimensional array puts the top floor following the
ground floor:

In: b[::-1]
Out:
array([[[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]],
 [[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]])

What just happened?
We sliced a multidimensional NumPy array using several different methods.

Time for action – manipulating array shapes
We already learned about the reshape function. Another recurring task is flattening
of arrays.

1. Ravel: We can accomplish this with the ravel function:

In: b
Out:
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

Chapter 2

[37]

In: b.ravel()
Out:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16,
 17, 18, 19, 20, 21, 22, 23])

2. Flatten: The appropriately-named function, flatten, does the same as ravel, but
flatten always allocates new memory whereas ravel might return a view of
the array.

In: b.flatten()
Out:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16,
 17, 18, 19, 20, 21, 22, 23])

3. Setting the shape with a tuple: Besides the reshape function, we can also set the
shape directly with a tuple, which is shown as follows:

In: b.shape = (6,4)
In: b
Out:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])

As you can see, this changes the array directly. Now, we have a 6-by-4 array.

4. Transpose: In linear algebra, it is common to transpose matrices. We can do that
too, by using the following code:

In: b.transpose()
Out:
array([[0, 4, 8, 12, 16, 20],
 [1, 5, 9, 13, 17, 21],
 [2, 6, 10, 14, 18, 22],
 [3, 7, 11, 15, 19, 23]])

5. Resize: The resize melthod works just like the reshape method, but modifies the
array it operates on:

In: b.resize((2,12))
In: b
Out:
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

Beginning with NumPy Fundamentals

[38]

What just happened?
We manipulated the shapes of NumPy arrays using the ravel function, function flatten,
the reshape function, and the resize method.

Stacking
Arrays can be stacked horizontally, depth-wise, or vertically. We can use, for that purpose,
the vstack, dstack, hstack, column_stack, row_stack, and concatenate functions.

Time for action – stacking arrays
First, let's set up some arrays:

In: a = arange(9).reshape(3,3)
In: a
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])

1. Horizontal stacking: Starting with horizontal stacking, we will form a tuple of
ndarrays and give it to the hstack function. This is shown as follows:

In: hstack((a, b))
Out:
array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])

We can achieve the same with the concatenate function, which is shown
as follows:

In: concatenate((a, b), axis=1)
Out:
array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])

Chapter 2

[39]

A

B

Hstack
Or

Concatenate
axis=1

A B

2. Vertical stacking: With vertical stacking, again, a tuple is formed. This time, it is
given to the vstack function. This can be seen as follows:

In: vstack((a, b))
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])

The concatenate function produces the same result with the axis set to 0. This is
the default value for the axis argument.

In: concatenate((a, b), axis=0)
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])

A

B

Vstack
Or

Concatenate
axis=0

A B

3. Depth stacking: Additionally, there is the depth-wise stacking using dstack and a
tuple, of course. This means stacking of a list of arrays along the third axis (depth).
For instance, we could stack 2D arrays of image data on top of each other.

In: dstack((a, b))
Out:
array([[[0, 0],

Beginning with NumPy Fundamentals

[40]

 [1, 2],
 [2, 4]],
 [[3, 6],
 [4, 8],
 [5, 10]],
 [[6, 12],
 [7, 14],
 [8, 16]]])

4. Column stacking: The column_stack function stacks 1D arrays column-wise. It's
shown as follows:

In: oned = arange(2)
In: oned
Out: array([0, 1])
In: twiceoned = 2 * oned
In: twiceoned
Out: array([0, 2])
In: column_stack((oned, twiceoned))
Out:
array([[0, 0],
 [1, 2]])

2D arrays are stacked the way hstack stacks them:

In: column_stack((a, b))
Out:
array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])
In: column_stack((a, b)) == hstack((a, b))
Out:
array([[True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True]], dtype=bool)

Yes, you guessed it right! We compared two arrays with the == operator. Isn't
it beautiful?

5. Row stacking: NumPy, of course, also has a function that does row-wise stacking.
It is called row_stack and, for 1D arrays, it just stacks the arrays in rows into
a 2D array.

In: row_stack((oned, twiceoned))
Out:
array([[0, 1],
 [0, 2]])

Chapter 2

[41]

The row_stack function results for 2D arrays are equal to. Yes, exactly the vstack
function results.

In: row_stack((a, b))
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])
In: row_stack((a,b)) == vstack((a, b))
Out:
array([[True, True, True],
 [True, True, True],
 [True, True, True],
 [True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)

What just happened?
We stacked arrays horizontally, depth-wise, or vertically. We used the vstack, dstack,
hstack, column_stack, row_stack, and concatenate functions.

Splitting
Arrays can be split vertically, horizontally, or depth wise. The functions involved are hsplit,
vsplit, dsplit, and split. We can either split into arrays of the same shape or indicate
the position after which the split should occur.

Time for action – splitting arrays
1. Horizontal splitting: The ensuing code splits an array along its horizontal axis into

three pieces of the same size and shape. This is shown as follows:

In: a
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
In: hsplit(a, 3)
Out:
[array([[0],
 [3],

Beginning with NumPy Fundamentals

[42]

 [6]]),
 array([[1],
 [4],
 [7]]),
 array([[2],
 [5],
 [8]])]

Compare it with a call of the split function, with extra parameter axis=1:

In: split(a, 3, axis=1)
Out:
[array([[0],
 [3],
 [6]]),
 array([[1],
 [4],
 [7]]),
 array([[2],
 [5],
 [8]])]

2. Vertical splitting: vsplit splits along the vertical axis:

In: vsplit(a, 3)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

The split function, with axis=0, also splits along the vertical axis:

In: split(a, 3, axis=0)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

3. Depth-wise splitting: The dsplit function, unsurprisingly, splits depth-wise. We
will need an array of rank 3 first:

In: c = arange(27).reshape(3, 3, 3)
In: c
Out:
array([[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]],
 [[9, 10, 11],
 [12, 13, 14],
 [15, 16, 17]],
 [[18, 19, 20],
 [21, 22, 23],
 [24, 25, 26]]])

Chapter 2

[43]

In: dsplit(c, 3)
Out:
[array([[[0],
 [3],
 [6]],
 [[9],
 [12],
 [15]],
 [[18],
 [21],
 [24]]]),
 array([[[1],
 [4],
 [7]],
 [[10],
 [13],
 [16]],
 [[19],
 [22],
 [25]]]),
 array([[[2],
 [5],
 [8]],
 [[11],
 [14],
 [17]],
 [[20],
 [23],
 [26]]])]

What just happened?
We split arrays using the hsplit, vsplit, dsplit, and split functions.

Array attributes
Besides the shape and dtype attributes, ndarray has a number of other attributes, as
shown in the following list:

 � ndim gives the number of dimensions:

In: b
Out:
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],

Beginning with NumPy Fundamentals

[44]

 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
In: b.ndim
Out: 2

 � size contains the number of elements. This is shown a follows:

In: b.size
Out: 24

 � itemsize gives the number of bytes for each element in the array:

In: b.itemsize

Out: 8

 � If you want the total number of bytes the array requires, you can have a look at
nbytes. This is just a product of the itemsize and size attributes:

In: b.nbytes
Out: 192
In: b.size * b.itemsize
Out: 192

 � The T attribute has the same effect as the transpose function, which is shown
as follows:

In: b.resize(6,4)
In: b
Out:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
In: b.T
Out:
array([[0, 4, 8, 12, 16, 20],
 [1, 5, 9, 13, 17, 21],
 [2, 6, 10, 14, 18, 22],
 [3, 7, 11, 15, 19, 23]])

 � If the array has a rank lower than 2, we will just get a view of the array:

In: b.ndim
Out: 1
In: b.T
Out: array([0, 1, 2, 3, 4])

Chapter 2

[45]

Complex numbers in NumPy are represented by .j. For example, we can create an array
with complex numbers:

In: b = array([1.j + 1, 2.j + 3])
In: b
Out: array([1.+1.j, 3.+2.j])

 � The real attribute gives us the real part of the array, or the array itself if it only
contains real numbers:

In: b.real
Out: array([1., 3.])

 � The imag attribute contains the imaginary part of the array:

In: b.imag
Out: array([1., 2.])

 � If the array contains complex numbers, then the data type is automatically
also complex:

In: b.dtype
Out: dtype('complex128')
In: b.dtype.str
Out: '<c16'

 � The flat attribute returns a numpy.flatiter object. This is the only way to
acquire a flatiter—we do not have access to a flatiter constructor. The flat
iterator enables us to loop through an array as if it is a flat array, as shown next:

In: b = arange(4).reshape(2,2)
In: b
Out:
array([[0, 1],
 [2, 3]])
In: f = b.flat
In: f
Out: <numpy.flatiter object at 0x103013e00>
In: for item in f: print item
 :
0
1
2
3

It is possible to directly get an element with the flatiter object:

In: b.flat[2]
Out: 2

Beginning with NumPy Fundamentals

[46]

or multiple elements:

In: b.flat[[1,3]]
Out: array([1, 3])

The flat attribute is settable. Setting the value of the flat attribute leads to
overwriting the values of the whole array:

In: b.flat = 7
In: b
Out:
array([[7, 7],
 [7, 7]])
or selected elements
In: b.flat[[1,3]] = 1
In: b
Out:
array([[7, 1],
 [7, 1]])

ndarray

real

size

ndim

imag

flat

T

nbytesitemsize

Time for action – converting arrays
We can convert a NumPy array to a Python list with the tolist function. This is shown
as follows:

1. Convert to a list:

In: b
Out: array([1.+1.j, 3.+2.j])
In: b.tolist()
Out: [(1+1j), (3+2j)]

2. astype function: The astype function converts the array to an array of the
specified type:

In: b
Out: array([1.+1.j, 3.+2.j])

Chapter 2

[47]

In: b.astype(int)
/usr/local/bin/ipython:1: ComplexWarning: Casting complex values
to real discards the imaginary part
 #!/usr/bin/python
Out: array([1, 3])

We are losing the imaginary part when casting from
complex type to int. The astype function also accepts
the name of a type as a string.

In: b.astype('complex')
Out: array([1.+1.j, 3.+2.j])

It won't show any warning this time, because we used the proper data type.

What just happened?
We converted NumPy arrays to a list and to arrays of different data types.

Summary
We learned a lot in this chapter about the NumPy fundamentals: data types and arrays.
Arrays have several attributes describing them. We learned that one of these attributes
is the data type, which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an efficient manner, just like Python lists. NumPy
arrays have the added ability of working with multiple dimensions.

The shape of an array can be manipulated in many ways—stacking, resizing, reshaping,
and splitting. A great number of convenience functions for shape manipulation were
demonstrated in this chapter.

Having learned about the basics, it's time to move on to the study of commonly-used
functions in Chapter 3, Get to terms with commonly used functions. This includes basic
statistical and mathematical functions.

3
Get into Terms with Commonly

Used Functions

In this chapter, we will have a look at common NumPy functions. In particular,
we will learn how to load data from files using a historical stock prices example.
Also, we will get to see the basic NumPy mathematical and statistical functions.

We will learn how to read from, and write to, files. Also, we will get a taste of
the functional programming and linear algebra possibilities in NumPy.

In this chapter, we shall cover the following topics:

 � Functions working on arrays

 � Loading arrays from files

 � Writing arrays to files

 � Simple mathematical and statistical functions

File I/O
First, we will learn about file I/O with NumPy. Data is usually stored in files. You would not
get far if you are not able to read from and write to files.

Get into Terms with Commonly Used Functions

[50]

Time for action – reading and writing files
As an example of file I/O, we will create an identity matrix and store its contents in a file.

Identity matrix creation
1. Creating an identity matrix: The identty matrix is a square matrix with ones on the

diagonal and zeroes for the rest.

� �

� �[[
The identity matrix can be created with the eye function. The only argument we
need to give the eye function is the number of ones. So, for instance, for a 2-by-2
matrix, write the following code:

i2 = numpy.eye(2)
print i2

The output is:

[[1. 0.]
[0. 1.]]

2. Saving data: Save the data with the savetxt function. We obviously need to specify
the name of the file that we want to save the data in and the array containing the
data itself:

numpy.savetxt("("eye.txt", i2)

A file called eye.txt should have been created. You can check for yourself whether the
contents are as expected.

What just happened?
Reading and writing files is a necessary skill for data analysis. We wrote to a file with
savetxt. We made an identity matrix with the eye function.

CSV files
Files in the comma separated values (CSV) format are encountered quite frequently. Often,
the CSV file is just a dump from a database file. Usually, each field in the CSV file corresponds
to a database table column. As we all know, spreadsheet programs, such as Excel, can
produce CSV files as well.

Chapter 3

[51]

Time for action – loading from CSV files
How do we deal with CSV files? Luckily, the loadtxt function can conveniently read CSV
files, split up the fields and load the data into NumPy arrays. In the following example,
we will load historical price data for Apple (the company, not the fruit). The data is in CSV
format. The first column contains a symbol that identifies the stock. In our case, it is AAPL,
next in our case. Nn is the date in dd-mm-yyyy format. The third column is empty. Then, in
order, we have the open, high, low, and close price. Last, but not least, is the volume of the
day. This is what a line looks like:

AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

 � Loading data: For now, we are only interested in the close price and volume. In the
preceding sample, that would be 336.1 and 21144800. Store the close price and
volume in two arrays as follows:

c,v=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,7),
unpack=True)))

As you can see, data is stored in the data.csv file. We have set the delimiter to , (comma),
since we are dealing with a comma separated value file. The usecols parameter is set
through a tuple to get the seventh and eighth fields, which correspond to the close price and
volume. Unpack is set to True, which means that data will be unpacked and assigned to the
c and v variables that will hold the close price and volume, respectively.

What just happened?
CSV files are a special type of file that we have to deal with frequently. We read a CSV file
containing stock quotes with the loadtxt function. We indicated to the loadtxt function
that the delimiter of our file was a comma. We specified which columns we were interested
in, through the usecols argument, and set the unpack parameter to True so that the data
was unpacked for further use.

Volume weighted average price
Volume weighted average price (VWAP) is a very important quantity. The higher the volume,
the more significant a price move typically is. VWAP is calculated by using volume values as
weights.

Get into Terms with Commonly Used Functions

[52]

Time for action – calculating volume weighted average price
These are the actions that we will take:

1.	 Read the data into arrays.

2.	 Calculate VWAP:

import numpy
c,v=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,7),
unpack=True)
vwap = numpy.average(c, weights=v)
print "VWAP =", vwap
The output is
VWAP = 350.589549353

What just happened?
That wasn't very hard, was it? We just called the average function and set its weights
parameter to use the v array for weights. By the way, NumPy also has a function to
calculate the arithmetic mean.

The mean function
The mean function is quite friendly and not so mean. This function calculates the arithmetic
mean of an array. Let's see it in action:

print "mean =", numpy.mean(c)
mean = 351.037666667

Time weighted average price
Now that we are at it, let's compute the time weighted average price too. It is just a variation
on a theme really. The idea is that recent price quotes are more important, so we should give
recent prices higher weights. The easiest way is to create an array with the arange function
of increasing values from zero to the number of elements in the close price array. This is not
necessarily the correct way. In fact, most of the examples concerning stock price analysis in
this book are only illustrative. The following is the TWAP code:

t = numpy.arange(len(c))
print "twap =", numpy.average(c, weights=t)

It produces this output:

twap = 352.428321839

The TWAP is even higher than the mean.

Chapter 3

[53]

Pop quiz – computing the weighted average
1. Which function returns the weighted average of an array?

a. weighted average

b. waverage

c. average

d. avg

Have a go hero – calculating other averages
Try doing the same calculation using the open price. Calculate the mean for the volume and
the other prices.

Value range
Usually, we don't only want to know the average or arithmetic mean of a set of values, which
are sort of in the middle; we also want the extremes, the full range—the highest and lowest
values. The sample data that we are using here already has those values per day—the high
and low price. However, we need to know the highest value of the high price and the lowest
price value of the low price. After all, how else would we know how much our Apple stocks
would gain or lose.

Time for action – finding highest and lowest values
The min and max functions are the answer to our requirement.

1.	 Reading from a file: First, we will need to read our file again and store the values for
the high and low prices into arrays:
h,l=numpy.loadtxt('data.csv', delimiter=',', usecols=(4,5),
unpack=True)

The only thing that changed is the usecols parameter, since the high and low
prices are situated in different columns.

2.	 Getting the range: The following code gets the price range:

print "highest =", numpy.max(h)))
print "lowest =", numpy.min(l)

These are the values returned:
highest = 364.9

lowest = 333.53

Now, it's trivial to get a midpoint, so it is left as an exercise for the reader to attempt.

Get into Terms with Commonly Used Functions

[54]

3.	 Calculating the spread: NumPy allows us to compute the spread of an array with
a function called The ptp function returns the difference between the maximum
and minimum values of an array. In other words, it is equal to max(array) –
min(array). Call the ptp function:

print "Spread high price", numpy.ptp(h)
print "Spread low price", numpy.ptp(l)

You will see this:

Spread high price 24.86
Spread low price 26.97

What just happened?
We defined a range of highest to lowest values for the price. The highest value was given by
applying the max function to the high price array. Similarly, the lowest value was found by
calling the min function to the low price array. We also calculated the peak to peak distance
with the ptp function.

Statistics
Stock traders are interested in the most probable close price. Common sense says that this
should be close to some kind of an average. The arithmetic mean and weighted average
are ways to find the center of a distribution of values. However, both are not robust and
sensitive to outliers. For instance, if we had a close price value of a million dollars, this
would have influenced the outcome of our calculations.

Time for action – doing simple statistics
One thing that we can do is use some kind of threshold to weed out outliers, but there is a
better way. It is called the median, and it basically picks the middle value of a sorted set of
values. For example, if we have the values of 1, 2, 3, 4 and 5. The median would be 3, since
it is in the middle. These are the steps to calculate the median:

1. Determine the median of the close price: Create a new Python script and call it
simplestats.py. You already know how to load the data from a CSV file into an
array. So, copy that line of code and make sure that it only gets the close price. The
code should appear like this, by now:

c=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,),
unpack=True)

Chapter 3

[55]

The function that will do the magic for us is called median. We will call it and print
the result immediately. Add the following line of code:

print "median =", numpy.median(c)

The program prints the following output:

median = 352.055

Since it is our first time using the median function, we would like to check whether
this is correct. Not because we are paranoid or anything! Obviously, we could do
it by just going through the file and finding the correct value, but that is no fun.
Instead we will just mimic the median algorithm by sorting the close price array and
printing the middle value of the sorted array. The msort function does the first part
for us. We will call the function, store the sorted array, and then print it:

sorted_close = numpy.msort(c)
print "sorted =", sorted_close

This prints the following output:

sorted = [336.1 338.61 339.32 342.62 342.88 343.44 344.32
345.03 346.5
 346.67 348.16 349.31 350.56 351.88 351.99 352.12 352.47
353.21
 354.54 355.2 355.36 355.76 356.85 358.16 358.3 359.18
359.56
 359.9 360. 363.13]

Yup, it works! Let's now get the middle value of the sorted array:

N = len(c)
print "middle =", sorted[(N - 1)/2]

It gives us the following output:

middle = 351.99

Hey, that's a different value than the one the median function gave us. How come?
Upon further investigation we find that the median function return value doesn't
even appear in our file. That's even stranger! Before filing bugs with the NumPy
team, let's have a look at the documentation. This mystery is easy to solve. It turns
out that our naive algorithm only works for arrays with odd lengths. For even-length
arrays, the median is calculated from the average of the two array values in the
middle. Therefore, type the following code:

print "average middle =", (sorted[N /2] + sorted[(N - 1) / 2]) / 2

This prints the following output:

average middle = 352.055

Success!

Get into Terms with Commonly Used Functions

[56]

Another statistical measure that we are concerned with is variance. Variance tells us
how much a variable varies. In our case, it also tells us how risky an investment is,
since a stock price that varies too wildly is bound to get us into trouble.

2. Calculate the variance of the close price: With NumPy, this is just a one liner. See
the following code:

print "variance =", numpy.var(c)

This gives us the following output:

variance = 50.1265178889

Not that we don't trust NumPy or anything, but let's double-check using the
definition of variance, as found in the documentation. Mind you, this definition
might be different than the one in your statistics book, but that is quite common in
the field of statistics. The variance is defined as the mean of the square of deviations
from the mean, divided by the number of elements in the array. Some books tell us
to divide by the number of elements in the array minus one.

print "variance from definition =", numpy.mean((c - c.mean())**2)

The output is as follows:

variance from definition = 50.1265178889

Just as we expected!

What just happened?
Maybe you noticed something new. We suddenly called the mean function on the c
array. Yes, this is legal, because the ndarray object has a mean method. This is for your
convenience. For now, just keep in mind that this is possible.

Stock returns
In academic literature it is more common to base analysis on stock returns and log returns
of the close price. Simple returns are just the rate of change from one value to the next.
Logarithmic returns or log returns are determined by taking the log of all the prices and
calculating the differences between them. In high school, we learned that the difference
between the log of "a" and the log of "b" is equal to the log of "a divided by b". Log return,
therefore, also measures rate of change. Returns are dimensionless, since, in the act of
dividing, we divide dollar by dollar (or some other currency). Anyway, investors are most likely
to be interested in the variance or standard deviation of the returns, as this represents risk.

Chapter 3

[57]

Time for action – analyzing stock returns
Follow the ensuing steps to analyze stock returns:

1.	 Simple returns: First, let's calculate simple returns. NumPy has the diff function
that returns an array built up of the difference between two consecutive array
elements. This is sort of like differentiation in calculus. To get the returns, we also
have to divide by the value of the previous day. We must be careful though. The
array returned by diff is one element shorter than the close prices array. After
careful deliberation, we get the following code:

returns = numpy.diff(arr) / arr[: -1]

Notice that we don't use the last value in the divisor. Let's compute the standard
deviation using the std function:

print "Standard deviation =", numpy.std(returns)

This results in the following output:

Standard deviation = 0.0129221344368

2.	 Logarithmic returns: The log return is even easier to calculate. We use the log
function to get the log of the close price and then unleash the diff function on the
result. This is shown as follows:

logreturns = numpy.diff(numpy.log(c))

Normally, we would have to check that the input array doesn't have zeroes or
negative numbers. If it did we would have gotten an error. Stock prices are, however,
always positive, so we didn't have to check.

3.	 Selecting positive returns: Quite likely, we will be interested in days when the return
is positive. In the current setup, we can get the next best thing with the where
function, which returns the indices of an array that satisfies a condition. Just type
the following code:

posretindices = numpy.where(returns > 0)
print "Indices with positive returns", posretindices

This gives us a number of indices for the array elements that are positive:

Indices with positive returns (array([0, 1, 4, 5, 6, 7, 9,
10, 11, 12, 16, 17, 18, 19, 21, 22, 23, 25, 28]),)

Get into Terms with Commonly Used Functions

[58]

4.	 Annualized and monthly volatilities: In investing, volatility measures price variation
of a financial security. Historical volatility is calculated from historical price data. The
logarithmic returns are interesting if you want to know the historical volatility—for
instance, the annualized or monthly volatility. The annualized volatility is equal to
the standard deviation of the log returns as a ratio of its mean, divided by one over
the square root of the number of business days in a year, usually one assumes 252.
Calculate it with the std and mean functions. See the following code:

annual_volatility = numpy.std(logreturns)/numpy.mean(logreturns)
annual_volatility = annual_volatility / numpy.sqrt(1./252.).)
print annual_volatility

Take notice of the division within the sqrt function. Since, in Python, integer
division works differently than float division, we needed to use floats to make sure
that we get the proper results. The monthly volatility is similarly given by:

print "Monthly volatility", annual_volatility * numpy.sqrt(1./12.)

What just happened?
We calculated the simple stock returns with the diff function, which calculates differences
between sequential elements. The log function computes the natural logarithms of array
elements. We used it to calculate the logarithmic returns. At the end of the tutorial we
calculated the annual and monthly volatility.

Dates
Do you sometimes have the Monday blues or the Friday fever? Ever wondered whether
the stock market suffers from said phenomena? Well, I think this certainly warrants
extensive research.

Time for action – dealing with dates
First, we will read the close price data. Second, we will split the prices according to the day
of the week. Third, for each weekday, we will calculate the average price. Finally, we will
find out which day of the week has the highest average and which has the lowest average. A
health warning before we commence: you might be tempted to use the result to buy stock
on one day and sell on the other. However, we don't have enough data to make these kind
of decisions. Please consult a professional statistician first!

Coders hate dates because they are so complicated! NumPy is very much oriented towards
floating point operations. For that reason, we need to take extra effort to process dates. Try
it out yourself; put the following code in a script or use the one that comes with the book:

dates, close=numpy.loadtxt('data.csv', delimiter=',',
 usecols=(1,6), unpack=True)

Chapter 3

[59]

Execute the script and the following error will appear:

ValueError: invalid literal for float(): 28-01-2011

1.	 Converter function: Obviously, NumPy tried to convert the dates into floats.
What we have to do is explicitly tell NumPy how to convert the dates. The
loadtxt function has a special parameter for this purpose. The parameter is
called converters and is a dictionary that links columns with so-called converter
functions. It is our responsibility to write the converter function.

Let's write the function down:

Monday 0
Tuesday 1
Wednesday 2
Thursday 3
Friday 4
Saturday 5
Sunday 6
def datestr2num(s):
 return datetime.datetime.strptime(s, "%d-%m-%Y").date().
weekday()

We give the datestr2num function dates as a string, such as "28-01-2011". The
string is first turned into a datetime object using a specified format "%d-%m-%Y".
This is, by the way, standard Python and is not related to NumPy itself. Second, the
datetime object is turned into a day. Finally the weekday method is called on the
date to return a number. As you can read in the comments, the number is between
0 and 6. 0 is for instance Monday and 6 is Sunday. The actual number, of course, is
not important for our algorithm; it is only used as identification.

2.	 Load the data: Now we will hook up our date converter function:

dates, close=numpy.loadtxt('data.csv', delimiter=',',
usecols=(1,6), converters={1: datestr2num}, unpack=True)
print "Dates =", dates

This prints the following output:

Dates = [4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2.
3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4.]

No Saturdays and Sundays, as you can see. Exchanges are closed over the weekend.

Get into Terms with Commonly Used Functions

[60]

3.	 Initialize the averages array: We will now make an array that has five elements for
each day of the week. The values of the array will be initialized to 0:

averages = numpy.zeros(5)

This array will hold the averages for each weekday.

4.	 Calculate the averages: We already learned about the where function that returns
indices of the array for elements that conform to a specified condition. The take
function can use these indices and takes the values of the corresponding array
items. We will use the take function to get the close prices for each week day. In
the following loop we go through the date values which are 0 to 4, better known
as Monday to Friday. We get the indices with the where function for each day and
store it in the indices array. Then, we retrieve the values corresponding to the
indices, using the take function. Finally we compute an average for each weekday
and store it in the averages array, like so:

for i in range(5):
 indices = numpy.where(dates == i)
 prices = numpy.take(close, indices)
 avg = numpy.mean(prices)
 print "Day", i, "prices", prices, "Average", avg
 averages[i] = avg

The loop prints the following output:

Day 0 prices [[339.32 351.88 359.18 353.21 355.36]] Average
351.79
Day 1 prices [[345.03 355.2 359.9 338.61 349.31 355.76]]
Average 350.635
Day 2 prices [[344.32 358.16 363.13 342.62 352.12 352.47]]
Average 352.136666667
Day 3 prices [[343.44 354.54 358.3 342.88 359.56 346.67]]
Average 350.898333333
Day 4 prices [[336.1 346.5 356.85 350.56 348.16 360.
351.99]] Average 350.022857143

5.	 Find the maxima and minima: If you want, you can go ahead and find out which day
has the highest, and which the lowest, average. However, it is just as easy to find this
out with the max and min functions, as shown here:

top = numpy.max(averages)
print "Highest average", top
print "Top day of the week", numpy.argmax(averages)
bottom = numpy.min(averages)
print "Lowest average", bottom
print "Bottom day of the week", numpy.argmin(averages)

Chapter 3

[61]

The output is as follows:
Highest average 352.136666667
Top day of the week 2
Lowest average 350.022857143
Bottom day of the week 4

What just happened?
The argmin function returned the index of the lowest value in the averages array. The
index returned was 4, which corresponds to Friday. The argmax function returned the index
of the highest value in the averages array. The index returned was 2, which corresponds
to Wednesday.

Have a go hero – looking at VWAP and TWAP
Hey, that was fun! For the sample data, it appears that Friday is the cheapest day and
Wednesday is the day when your Apple stock will be worth the most. Ignoring the fact that
we have very little data, is there a better method to compute the averages? Shouldn't we
involve volume data as well? Maybe it makes more sense to you to do a time-weighted
average. Give it a go! Calculate the VWAP and TWAP. You can find some hints on how to
go about doing this at the beginning of this chapter.

Weekly summary
The data that we used in the previous Time for action tutorials is end-of-day data. In essence,
it is summarized data compiled from trade data for a certain day. If you are interested in
the cotton market and have decades of data, you might want to summarize and compress
the data even further. Let's do that. Let's summarize the data of Apple stocks to give us
weekly summaries.

Time for action – summarizing data
The data we will summarize will be for a whole business week from Monday to Friday. During
the period covered by the data, there was one holiday on February 21st, President's Day.
This happened to be a Monday and the US stock exchanges were closed on this day. As a
consequence, there is no entry for this day, in the sample. The first day in the sample is a
Friday, which is inconvenient. Use the following instructions to summerize data:

1.	 Selecting the first three weeks: To simplify, we will just have a look at the first three
weeks in the sample—you can later have a go at improving this:
close = close[:16]
dates = dates[:16]

We will build on the code from the previous Time for action tutorial.

Get into Terms with Commonly Used Functions

[62]

2.	 Finding the first Monday: Commencing, we will find the first Monday in our sample
data. Recall that Mondays have the code 0 in Python. This is what we will put in the
condition of a where function. Then, we will need to extract the first element that
has index 0. The result would be a multidimensional array. Flatten that with the
ravel function:

get first Monday
first_monday = numpy.ravel(numpy.where(dates == 0))[0]
print "The first Monday index is", first_monday

This will print the following output:

The first Monday index is 1

3.	 Finding the last Friday: The next logical step is to find the Friday before last Friday
in the sample. The logic is similar to the one for finding the first Monday, and the
code for Friday is 4. Additionally, we are looking for the second-to-last element
with index 2.

get last Friday
last_friday = numpy.ravel(numpy.where(dates == 4))[-2]
print "The last Friday index is", last_friday

This will give us the following output:

The last Friday index is 15

Creating arrays with multi-week indices: Next, create an array with the indices of all
the days in the three weeks

weeks_indices = numpy.arange(first_monday, last_friday + 1)
print "Weeks indices initial", weeks_indices

4.	 Splitting the array: Split the array in pieces of size 5 with the split function.

weeks_indices = numpy.split(weeks_indices, 5)
print "Weeks indices after split", weeks_indices

It splits the array as follows:

Weeks indices after split [array([1, 2, 3, 4, 5]), array([6, 7,
8, 9, 10]), array([11, 12, 13, 14, 15])]

Chapter 3

[63]

5.	 Calling the apply_along_axis function: In NumPy, dimensions are called axes.
Now, we will get fancy with the apply_along_axis function. This function calls
another function, which we will provide, to operate on each of the elements of an
array. Currently, we have an array with three elements. Each array item corresponds
to one week in our sample and contains indices of the corresponding items. Call
the apply_along_axis function by supplying the name of our function, called
summarize, that we will define shortly. Further specify the axis or dimension
number (such as 1), the array to operate on, and a variable number of arguments
for the summarize function, if any:

weeksummary = numpy.apply_along_axis(summarize, 1, weeks_indices,
open, high, low, close)
print "Week summary", weeksummary

6.	 Write the summarize function: The summarize function returns, for each week,
a tuple that holds the open, high, low, and close price for the week, similarly to
end-of-day data:

def summarize(a, o, h, l, c):
 monday_open = o[a[0]]
 week_high = numpy.max(numpy.take(h, a))
 week_low = numpy.min(numpy.take(l, a))
 friday_close = c[a[-1]]

 return("APPL", monday_open, week_high, week_low, friday_close)

Notice that we used the take function to get the actual values from indices.
Calculating the high and low values of the week was easily done with the max and min
functions. The open for the week is the open for the first day in the week—Monday.
Likewise, the close is the close for the last day of the week—Friday:

Week summary [['APPL' '335.8' '346.7' '334.3' '346.5']
 ['APPL' '347.89' '360.0' '347.64' '356.85']
 ['APPL' '356.79' '364.9' '349.52' '350.56']]

7.	 Writing the date to a file: Store the data in a file with the NumPy savetxt function:

numpy.savetxt("weeksummary.csv", weeksummary, delimiter=",",
fmt="%s")

As you can see, we specify a filename, the array we want to store, a delimiter
(in this case a comma), and the format we want to store floating point numbers in.

Get into Terms with Commonly Used Functions

[64]

The format string starts with a percent sign. Second is an optional flag. The—flag
means left justify, 0 means left pad with zeroes, + means precede with + or -.
Third is an optional width. The width indicates the minimum number of characters.
Fourth, a dot is followed by a number linked to precision. Finally, there comes a
character specifier; in our example, the character specifier is a string.

Character code Description

c character

d or i signed decimal integer

e or E scientific notation with e or E.

f decimal floating point

g,G use the shorter of e,E or f

o signed octal

s string of characters

u unsigned decimal integer

x,X unsigned hexadecimal integer

View the generated file in your favorite editor or type at the command line:

cat weeksummary.csv

APPL,335.8,346.7,334.3,346.5

APPL,347.89,360.0,347.64,356.85

APPL,356.79,364.9,349.52,350.56

What just happened?
We did something that is not even possible in some programming languages. We defined a
function and passed it as an argument to the apply_along_axis function. Arguments for
the summarize function were neatly passed by apply_along_axis.

Have a go hero – improving the code
Change the code to deal with a holiday. Time the code to see how big the speedup due to
apply_along_axis is.

Chapter 3

[65]

Average true range
The average true range (ATR) is a technical indicator that measures volatility of stock prices.
The ATR calculation is not important further but will serve as an example of several NumPy
functions, including the maximum function.

Time for action – calculating the average true range
To calculate the average true range, follow the ensuing steps:

1.	 Selecting the last N days: The ATR is based on the low and high price of N days,
usually the last 20 days.

N = int(sys.argv[1])
h = h[-N:]
l = l[-N:]

2.	 Retrieving the previous close days price: We also need to know the close price of
the previous day:

previousclose = c[-N -1: -1]

For each day, we calculate the following:

The daily range—the difference between high and low price:

h – l

The difference between high and previous close:

h – previousclose

The difference between the previous close and the low price:

previousclose – l

3.	 Computing the true range: The max function returns the maximum of an array.
Based on those three values, we calculate the so-called true range, which is the
maximum of these values. We are now interested in the element-wise maxima
across arrays – meaning the maxima of the first elements in the arrays, the second
elements in the arrays, and so on. Use the NumPy maximum function instead of the
max function for this purpose:

truerange = numpy.maximum(h - l, h - previousclose, previousclose
- l)

4.	 Initializing an atr array: Create an atr array of size N and initialize its values to 0:

atr = numpy.zeros(N)

Get into Terms with Commonly Used Functions

[66]

5.	 Initializing the first element: The first value of the array is just the average of the
truerange array:

atr[0] = numpy.mean(truerange)

Calculate the other values with the following formula:

((N-1)PATR+TR)

N

Here, PATR is the previous day's ATR; TR is the true range:

for i in range(1, N):
 atr[i] = (N - 1) * atr[i - 1] + truerange[i]
 atr[i] /= N

What just happened?
We formed three arrays, one for each of the three ranges—daily range, the gap between
the high of today and the close of yesterday, and the gap between the close of yesterday
and the low of today. This tells us how much the stock price moved and, therefore, how
volatile it is. The algorithm requires us to find the maximum value for each day. The max
function that we used before can give us the maximum value within an array, but that is not
what we want here. We need the maximum value across arrays, so we want the maximum
value of the first elements in the three arrays, the second elements, and so on. In this Time
for action tutorial, we saw that the maximum function can do this. After that, we computed a
moving average of the true range values. In the following tutorials, we will learn better ways
to calculate moving averages.

Have a go hero – taking the minimum function for a spin
Besides the maximum function, there is a minimum function. You can probably guess what it
does. Make a small script or start an interactive session in IPython to prove your assumptions.

Simple moving average
The simple moving average is commonly used to analyze time-series data. To calculate it, we
define a moving window of N periods, N days in our case. We move this window along the
data and calculate the mean of the values inside the window.

Chapter 3

[67]

Time for action – computing the simple moving average
The moving average is easy enough to compute with a few loops and the mean function,
but NumPy has a better alternative—the convolve function. The simple moving average
is, after all, nothing more than a convolution with equal weights or, if you like, unweighted.
Use the following steps to compute the simple moving average:

1. Setting the weights: Use the ones function to create an array of size N and elements
initialized to 1; then, divide the array by N to give us the weights:

N = int(sys.argv[1])
weights = numpy.ones(N) / N
print "Weights", weights

For N = 5, this gives us the following output:

Weights [0.2 0.2 0.2 0.2 0.2]

2. Using the convolve function: Now call the convolve function with these weights:

c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,),
unpack=True)
sma = numpy.convolve(weights, c)[N-1:-N+1]]

3. Plotting the simple moving average: From the array that convolve returned, we
extracted the data in the center of size N. The following code makes an array of time
values and plots with the matplotlib that we will be covering in a later chapter:

c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,),
unpack=True)
sma = numpy.convolve(weights, c)[N-1:-N+1]
t = numpy.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()

Get into Terms with Commonly Used Functions

[68]

In the following chart, the smooth thick line is the 5-day simple moving average and
the jagged thin line is the close price:

What just happened?
We computed the simple moving average for the close stock price. Truly great riches are
within your reach. It turns out that the simple moving average is just a signal processing
technique—a convolution with weights 1/N, where N is the size of the moving average
window. We learned that the ones function can create an array with ones and the
convolve function calculates the convolution of a data set with specified weights.

Exponential moving average
The exponential moving average is a popular alternative to the simple moving average. This
method uses exponentially-decreasing weights. The weights for point in the past decrease
exponentially but never reach zero. We will learn about the exp and linspace function
while calculating the weights.

Chapter 3

[69]

Time for action – calculating the exponential moving average
Given an array, the exp function calculates the exponential of each array element. For
example, look at the following code:

x = numpy.arange(5)
print "Exp", numpy.exp(x)

It gives the following output:

Exp [1. 2.71828183 7.3890561 20.08553692 54.59815003]

The linspace function takes, as parameters, a start and a stop and optionally an array size.
It returns an array of evenly-spaced numbers. Here is an example:

print "Linspace", numpy.linspace(-1, 0, 5)

This will give us the following output:

Linspace [-1. -0.75 -0.5 -0.25 0.]

Let's calculate the exponential moving average for our data:

1. Initialize the weights: Now, back to the weights—calculate them with exp
and linspace:

N = int(sys.argv[1])
weights = numpy.exp(numpy.linspace(-1., 0., N))

2. Normalization: Normalize the weights. The ndarray object has a sum method
that we will use:

weights /= weights.sum()
print "Weights", weights

For N = 5, we get these weights:

Weights [0.11405072 0.14644403 0.18803785 0.24144538
0.31002201]

3. Convolve: After that, it's easy going—we just use the convolve function that we
learned about in the simple moving average tutorial. We will also plot the results:

c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,),
unpack=True)
ema = numpy.convolve(weights, c)[N-1:-N+1]
t = numpy.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()

Get into Terms with Commonly Used Functions

[70]

That gives this nice chart where, again, the close price is the thin jagged line and the
exponential moving average is the smooth thick line:

What just happened?
We calculated the exponential moving average of the close price. First, we computed
exponentially-decreasing weights with the exp and linspace functions. linspace gave
us an array with evenly-spaced elements, and then, we calculated the exponential for these
numbers. We called the ndarray sum method in order to normalize the weights. After that,
we applied the convolve trick that we learned in the simple moving average tutorial.

Bollinger bands
Bollinger bands are yet another technical indicator. Yes, there are thousands of them. This
one is named after its inventor and consists of three parts: First, a simple moving average.
Second, an upper band of two standard deviations above this moving average—the standard
deviation is derived from the same data with which the moving average is calculated. Third,
a lower band of two standard deviations below the moving average.

Chapter 3

[71]

Time for action – enveloping with Bollinger bands
We already know how to calculate the simple moving average. So, if you need to, please
review the Time for action tutorial in this chapter. This example will introduce the NumPy
fill function. The fill function sets the value of an array to a scalar value. The function
should be faster than array.flat = scalar or setting the values of the array one-by-one
in a loop.

1. Calculate the Bollinger bands: Starting with an array called sma that contains the
moving average values, we will loop through all the data sets corresponding to
said values. After forming the data set, calculate the standard deviation. Note that
it is necessary, at a certain point, to calculate the difference between each data
point and the corresponding average value. If we did not have NumPy, we would
loop through these points and subtract each of the values one-by-one from the
corresponding average. However, the NumPy fill function allows us to construct
an array having elements set to the same value. This enables us to save on one loop
and subtract arrays in one go:

deviation = []
C = len(c)

for i in range(N - 1, C):
 if i + N < C:
 dev = c[i: i + N]
 else:
 dev = c[-N:]:]

 averages = numpy.zeros(N)
 averages.fill(sma[i - N - 1])
 dev = dev - averages
 dev = dev ** 2
 dev = numpy.sqrt(numpy.mean(dev))))
 deviation.append(dev)

deviation = 2 * numpy.array(deviation)
upperBB = sma + deviation
lowerBB = sma – deviation

2. Plot the bands: To plot, we will use the following code (don't worry about it now;
we will see how this works in Chapter 9, Plotting with Matplotlib):

t = numpy.arange(N - 1, C)
plot(t, c_slice, lw=1.0)
plot(t, sma, lw=2.0)
plot(t, upperBB, lw=3.0)
plot(t, lowerBB, lw=4.0)
show()

Get into Terms with Commonly Used Functions

[72]

Following is a chart of the Bollinger bands for our data. The jagged thin line in the middle
represents the close price, the slightly thicker, smoother line crossing it is the moving average:

What just happened?
We worked out the Bollinger bands that envelope the close price of our data. More
importantly, we got acquainted with the NumPy fill function. This function fills an
array with a scalar value. This is the only parameter of the fill function.

Have a go hero – switching to exponential moving average
It is customary to choose the simple moving average to centre the Bollinger band on. The
second-most popular choice is the exponential moving average, so try that as an exercise.
You can find a suitable example in this chapter, if you need pointers.

Check that the fill function is faster or is as fast as array.flat = scalar, or setting
the value in a loop.

Linear model
Many phenomena in science have a related linear relationship model. The NumPy linalg
package deals with linear algebra computations. We will begin with the assumption that a
price value can be derived from N previous prices based on a linear relationship relation.

Chapter 3

[73]

Time for action – predicting price with a linear model
Keeping an open mind, let's assume that we can express a stock price as a linear combination
of previous values, that is, a sum of those values multiplied by certain coefficients that
we need to determine. In linear algebra terms, this boils down to finding a least-squares
solution. The recipe goes as follows.

1.	 Form a price vector: First, form a vector bbx containing N price values:

bbx = c[-N:]
bbx = b[::-1]
print "bbx", x

The result is as follows:

bbx [351.99 346.67 352.47 355.76 355.36]

2.	 Pre-initialize the matrix: Second, pre-initialize the matrix A to be N-by-N and
contain zeroes:

A = numpy.zeros((N, N), float)
print "Zeros N by N", A

Zeros N by N [[0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]]

3.	 Fill the matrix: Third, fill the matrix A with N preceding price values for each value
in bbx:

for i in range(N):
 A[i,] = c[-N - 1 - i: - 1 - i]
print "A", A

Now, A looks like this:

A [[360. 355.36 355.76 352.47 346.67]
 [359.56 360. 355.36 355.76 352.47]
 [352.12 359.56 360. 355.36 355.76]
 [349.31 352.12 359.56 360. 355.36]
 [353.21 349.31 352.12 359.56 360.]]

Get into Terms with Commonly Used Functions

[74]

4.	 Get the least squares solution: The objective is to determine the coefficients that
satisfy our linear model, by solving the least-squares problem. Employ the lstsq
function of the NumPy linalg package to do that:

(x, residuals, rank, s) = numpy.linalg.lstsq(A, b)

print x, residuals, rank, s

The result is as follows:

[0.78111069 -1.44411737 1.63563225 -0.89905126 0.92009049]
[] 5 [1.77736601e+03 1.49622969e+01 8.75528492e+00
5.15099261e+00 1.75199608e+00]

The tuple returned contains the coefficients xxb that we were after, an array
comprising of residuals, the rank of matrix A, and the singular values of A.

5.	 Extrapolate to the next day: Once we have the coefficients of our linear model, we
can predict the next price value. GetCompute the dot product (with the NumPy dot
function) of the coefficients and the last known N prices:

print numpy.dot(b, x)

The dot product is the linear combination of the coefficients xxb and the prices x.
As a result, we get:

357.939161015

I looked it up; the actual close price of the next day was 353.56. So, our estimate
with N = 5 was not that far off.

What just happened?
We predicted tomorrow's stock price today. If this works in practice, we could retire
early! See, this book was a good investment after all! We designed a linear model for the
predictions. The financial problem was reduced to a linear algebraic one. NumPy's linalg
package has a practical lstsq function that helped us with the task at hand—estimating
the coefficients of a linear model. After obtaining a solution, we plugged the numbers in the
NumPy dot function that presented us an estimate through linear regression.

Trend lines
A trend line is a line among a number of so-called pivot points on a stock chart. As the name
suggests, the line's trend portrays the trend of the price development. In the past, traders
drew trend lines on paper; but, nowadays, we can let a computer draw it for us. In this
tutorial, we shall resort to a very simple approach that is probably not very useful in real life,
but it should clarify the principle well.

Chapter 3

[75]

Time for action – drawing trend lines
Follow the ensuing steps to draw trend lines:

1. Determine the pivots: First, we need to determine the pivot points. We shall
pretend they are equal to the arithmetic mean of the high, low, and close price:

h, l, c = numpy.loadtxt('data.csv', delimiter=',', usecols=(4, 5,
6), unpack=True)

pivots = (h + l + c) / 3
print "Pivots", pivots

From the pivots, we can deduce the so-called resistance and support levels. The
support level is the lowest level at which the price rebounds. The resistance
level is the highest level at which the price bounces back. These are not natural
phenomena, mind you, they are merely estimates. Based on these estimates, it is
possible to draw support and resistance trend lines. We will define the daily spread
to be the difference of the high and low price.

2. Fit data to a line: Define a function to fit line to data to a line where y = at + b.
The function should return a and b. This is another opportunity to apply the lstsq
function of the NumPy linalg package. Rewrite the line equation to y = Ax, where
A = [t 1] and x = [a b]. Form A with the NumPy ones and vstack function:

def fit_line(t, y):
 A = numpy.vstack([t, numpy.ones_like(t)]).))]).T
 return numpy.linalg.lstsq(A, y)[0]

3. Determine the support and resistance levels: Assuming that support levels are one
daily spread below the pivots, and that resistance levels are one daily spread above
the pivots, fit the support and resistance trend lines:

t = numpy.arange(len(c))
sa, sb = fit_line(t, pivots - (h - l))
ra, rb = fit_line(t, pivots + (h - l))
support = sa * t + sb
resistance = ra * t + rb

4. Analyze the bands: At this juncture, we have all the necessary information to
draw the trend lines, however, it is wise to check how many points fall between
the support and resistance levels. Obviously, if only a small percentage of the
data is between the trend lines, then this setup is of no use to us. Make up a
condition for points between the bands and select with the where function
based on the condition:

condition = (c > support) & (c < resistance)
print "Condition", condition
between_bands = numpy.where(condition)

Get into Terms with Commonly Used Functions

[76]

These are the condition values:

Condition [False False True True True True True False False
True False False
 False False False True False False False True True True True
False False True True True False True]

Double-check the values:

print support[between_bands]
print c[between_bands]
print resistance[between_bands]

The array returned by the where function has rank 2, so call the ravel function
before calling the len function:

between_bands = len(numpy.ravel(between_bands))))
print "Number points between bands", between_bands
print "Ratio between bands", float(between_bands)/len(c)

You will get the following result:

Number points between bands 15
Ratio between bands 0.5

As an extra bonus, we gained a predictive model. Extrapolate the next day resistance
and support levels:

print "Tomorrows support", sa * (t[-1] + 1) + sb
print "Tomorrows resistance", ra * (t[-1] + 1) + rb

This results in:

Tomorrows support 349.389157088
Tomorrows resistance 360.749340996

Another approach to figure out how many points are between the support and
resistance estimates is to use [] and intersect1d. Define selection criteria in the
[] operatpr and intersect the results with the intersect1d function.

a1 = c[c > support]
a2 = c[c < resistance]
print "Number of points between bands 2nd approach" ,len(numpy.
intersect1d(a1, a2))

Not surprisingly, we get:

Number of points between bands 2nd approach 15

Chapter 3

[77]

5. Plot the bands: Once more, we will plot the results:

plot(t, c)
plot(t, support)
plot(t, resistance)
show()

In the preceding plot, we have the price data and the corresponding support and
resistance lines.

What just happened?
We drew trend lines without having to mess around with rulers, pencils, and paper charts.
We defined a function that can fit data to a line with the NumPy vstack, ones, and lstsq
functions. We fit the data in order to define support and resistance trend lines. Then we
figured out how many points are within the support and resistance range. We did this using
two separate methods that produced the same result.

The first method used the where function with a Boolean condition. The second method
made use of the [] operator and the intersect1d function. The intersect1d function
returns an array of common elements from two arrays.

Get into Terms with Commonly Used Functions

[78]

Methods of ndarray
The NumPy ndarray class has a lot of methods that work on the array. Most of the time,
these methods return an array. You may have noticed that many of the functions that are
part of the NumPy library have a counterpart with the same name and functionality in the
ndarray object. This is mostly due to the historical development of NumPy.

The list of ndarray methods is pretty long, so we cannot cover them all. The mean, var,
sum, std, argmax, argmin, and mean functions that we saw earlier are also ndarray
methods.

To clip and compress arrays, look at the following section:

Time for action – clipping and compressing arrays
1.	 Here are a few examples of ndarray methods. The clip method returns a clipped

array, so that all values above a maximum value are set to the maximum and values
below a minimum are set to the minimum value. Clip an array with values 0 to 4 to 1
and 2:

a = numpy.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2)

This gives the following output:

a = [0 1 2 3 4]
Clipped [1 1 2 2 2]

2.	 The ndarray compress method returns an array based on a condition. For
instance, look at the following code:

a = numpy.arange(4)
print a
print "Compressed", a.compress(a > 2)

This returns the following output:

[0 1 2 3]
Compressed [3]

Chapter 3

[79]

What just happened?
We created an array with values 0 to 3 and selected the last element with the compress
function based on the condition a > 2.

Factorial
Many programming books have an example of calculating the factorial. We should not break
with this tradition.

Time for action – calculating the factorial
The ndarray has the prod method, which computes the product of the elements in an
array.

1.	 Call the prod function: Calculate the factorial of eight. To do that, generate an array
with values 1 to 8 and call the prod function on it:

b = numpy.arange(1, 9)
print "b =", b
print "Factorial", b.prod()

Check the result with your pocket calculator:

b = [1 2 3 4 5 6 7 8]
Factorial 40320

This is nice, but what if we want to know all the factorials from 1 to 8?

2.	 Call cumprod: No problem! Call the cumprod method, which computes the
cumulative product of an array:

print "Factorials", b.cumprod()

It's pocket calculator time again:

Factorials [1 2 6 24 120 720 5040 40320]

What just happened?
We used the prod and cumprod functions to calculate factorials.

Get into Terms with Commonly Used Functions

[80]

Summary
This chapter informed us about a great number of common NumPy functions. We read a file
with loadtxt and wrote to a file with savetxt. We made an identity matrix with the eye
function. We read a CSV file containing stock quotes with the loadtxt function. The NumPy
average and mean functions allow one to calculate the weighed average and arithmetic
mean of a data set.

A few common statistics functions were also mentioned: First, the min and max functions we
used to determine the range of the stock prices. Second, the median function that gives the
median of a data set. Finally, the std and var functions that return the standard deviation
and variance of a set of numbers.

We calculated the simple stock returns with the diff function that returns the back
differences between sequential elements. The log function computes the natural
logarithms of array elements.

By default, loadtxt tries to convert all data into floats. The loadtxt function has a special
parameter for this purpose. The parameter is called converters and is a dictionary that
links columns with the so-called converter functions.

We defined a function and passed it as an argument to the apply_along_axis
function. We implemented an algorithm with the requirement to find the maximum
value across arrays.

We learned that the ones function can create an array with ones and the convolve
function calculates the convolution of a data set with specified weights.

We computed exponentially-decreasing weights with the exp and linspace functions.
Linspace gave us an array with evenly-spaced elements, and then we calculated the
exponential for these numbers. We called the ndarray sum method in order to normalize
the weights.

We got acquainted with the NumPy fill function. This function fills an array with a scalar
value, the only parameter of the fill function.

After this tour through the common NumPy functions, we will continue covering
convenience NumPy functions in the next chapter.

4
Convenience Functions for

Your Convenience

As we have noticed, NumPy has a great number of functions. Many of these
functions are there just for your convenience. Knowing these functions will
greatly increase your productivity. This includes functions that select certain
parts of your arrays (based on a Boolean condition, for instance) or manipulate
polynomials. An example of computing correlation of stock returns is given to
give you a taste of data analysis in NumPy.

In this chapter, we shall cover the following topics:

 � Data selection and extraction

 � Simple data analysis

 � Examples of correlation of returns

 � Polynomials

 � Linear algebra functions

In the previous chapter, we had one single data file to play around with. Things have
significantly improved in this chapter—we now have two data files. Let's go ahead and
explore the data with NumPy.

Convenience Functions for Your Convenience

[82]

Correlation
Have you noticed that the stock price of some companies is closely followed by another one,
usually a rival in the same sector? The theoretical explanation is that, because these two
companies are in the same type of business, they share the same challenges, require the
same materials and resources, and compete for the same type of customers.

You could think of many possible pairs, but you would want to check whether a real
relationship exists. One way is to have a look at the correlation of the stock returns of
both stocks. A high correlation implies a relationship of some sort. It is not proof though,
especially if you don't use sufficient data.

Time for action – trading correlated pairs
For this tutorial, we will use two sample data sets, containing the bare minimum of end-
of-day price data. The first company is BHP Billiton (BHP), which is active in mining of
petroleum, metals, and diamonds. The second is Vale (VALE), which is also a metals
and mining company. So there is some overlap, albeit not hundred percent. For trading
correlated pairs, follow the ensuing steps:

1. Load the data: First, load the data, specifically the close price of the two securities,
from the CSV files in the example code directory of this chapter and calculate the
returns. If you don't remember how to do it, there are plenty of examples in the
previous chapter.

2. Covariance: Covariance tells us how two variables vary together; it is nothing more
than unnormalized correlation. Compute the covariance matrix from the returns
with the cov function (it's not strictly necessary to do this, but it will allow us to
demonstrate a few matrix operations):

covariance = numpy.cov(bhp_returns, vale_returns)
print "Covariance", covariance

The covariance matrix is as follows:

Covariance [[0.00028179 0.00019766]
[0.00019766 0.00030123]]

3. Diagonal values: View the values on the diagonal with the diagonal function:

print "Covariance diagonal", covariance.diagonal()

The diagonal values of the covariance matrix are as follows:

Covariance diagonal [0.00028179 0.00030123]

Notice that the values on the diagonal are not equal to each other, this is different
from the correlation matrix.

Chapter 4

[83]

4. Trace: Compute the trace, the sum of the diagonal values, with the trace function:

print "Covariance trace", covariance.trace()

The trace values of the covariance matrix are as follows:

Covariance trace 0.00058302354992

5. Correlation from covariance: The correlation of two vectors is defined as the
covariance, divided by the product of the respective standard deviations of the
vectors. The equation for vectors a and b is:

Corr(a,b)
cov(a,b)

b b

=

Try it out:

print covariance/ (bhp_returns.std() * vale_returns.std())

The correlation matrix is as follows:

[[1.00173366 0.70264666]
[0.70264666 1.0708476]]

6. Correlation coefficients: We will measure the correlation of our pair with the
correlation coefficient. The correlation coefficient takes values between -1 to 1.
The correlation of a set of values with itself is 1 by definition. This would be the
ideal value; however, we will be also happy with a slightly lower value. Calculate
the correlation coefficient (or, more accurately, the correlation matrix) with the
corrcoef function:

print "Correlation coefficient", numpy.corrcoef(bhp_returns, vale_
returns)

The coefficients are as follows:

[[1. 0.67841747]
[0.67841747 1.]]

The values on the diagonal are just the correlations of the BHP and VALE with
themselves and are, therefore, equal to 1. In all probability, no real calculation takes
place. The other two values are equal to each other since correlation is symmetrical,
meaning that the correlation of BHP with VALE is equal to the correlation of VALE
with BHP. It seems that the correlation is not that strong.

Convenience Functions for Your Convenience

[84]

7. Breakout: Another important point is whether the two stocks under consideration
are in sync or not. Two stocks are considered out of sync if their difference is two
standard deviations from the mean of the differences.

If they are out of sync, we could initiate a trade, hoping that they eventually will
get back in sync again. Compute the difference between the close prices of the two
securities to check the synchronization:

difference = bhp - vale

Check whether the last difference in price is out of sync; see the following code:

avg = numpy.mean(difference)
dev = numpy.std(difference)
print "Out of sync", numpy.abs(difference[-1] – avg) > 2 * dev

Unfortunately, we cannot trade yet:

Out of sync False

8. Plotting: Plotting requires Matplotlib; this will be discussed in Chapter 9, Plotting
with Matplotlib. Plotting can be done as follows:

t = numpy.arange(len(bhp_returns))
plot(t, bhp_returns, lw=1)
plot(t, vale_returns, lw=2)
show()

The resulting plot:

Chapter 4

[85]

What just happened?
We analyzed the relation of the closing stock prices of BHP and VALE. To be precise, we
calculated the correlation of their stock returns. This was achieved with the corrcoef
function. Further, we saw how the covariance matrix can be computed, from which the
correlation can be derived. As a bonus, a demonstration was given of the diagonal and
trace functions that can give us the diagonal values and the trace of a matrix, respectively.

Pop quiz – calculating covariance
1. Which function returns the covariance of two arrays?

a. covariance

b. covar

c. cov

d. cvar

Polynomials
Do you like calculus? Me, I love it! One of the ideas in calculus is Taylor expansion, that is,
representing a differentiable function as an infinite series. In practice, this means that any
differentiable, and therefore continuous, function can be estimated by a polynomial of a high
degree. The terms of the higher degree would then be assumed to be negligibly small.

Time for action – fitting to polynomials
The NumPy polyfit function can fit a set of data points to a polynomial even if the
underlying function is not continuous.

1. Polynomial fit: Continuing with the price data of BHP and VALE, let's look at the
difference of their close prices and fit it to a polynomial of the third power:

bhp=numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,),
 unpack=True)
vale=numpy.loadtxt('VALE.csv', delimiter=',', usecols=(6,),
 unpack=True)
t = numpy.arange(len(bhp))
poly = numpy.polyfit(t, bhp - vale, int(sys.argv[1]))
print "Polynomial fit", poly

The polynomial fit (in this example, a cubic polynomial was chosen):

Polynomial fit [1.11655581e-03 -5.28581762e-02 5.80684638e-01
5.79791202e+01]

Convenience Functions for Your Convenience

[86]

2. Extrapolate to the next day: The numbers you see are the coefficients of the
polynomial. Extrapolate to the next value with the polyval function and the
polynomial object we got from the fit:

print "Next value", numpy.polyval(poly, t[-1] + 1)

The next value we predict will be:

Next value 57.9743076081

3. Find the roots: Ideally, the difference between the close prices of BHP and VALE
should be as small as possible. In an extreme case, it might be zero at some point.
Find out when our polynomial fit reaches zero with the roots function:

print "Roots", numpy.roots(poly)

The roots of the polynomial are as as follows:

Roots [35.48624287+30.62717062j 35.48624287-30.62717062j
-23.63210575 +0.j]

The roots are complex; that's no good.

4. Differentiate: Another thing we learned in calculus class was to find extremums—
these could be potential maxima or minima. Remember, from calculus, that
these are the points where the derivative of our function is zero. Differentiate the
polynomial fit with the polyder function:

der = numpy.polyder(poly)
print "Derivative", der

The coefficients of the derivative polynomial are as follows:

Derivative [0.00334967 -0.10571635 0.58068464]

The numbers you see are the coefficients of the derivative polynomial.

5. Find the extrema: Get the roots of the derivative:

print "Extremas", numpy.roots(der)

The extremas that we get are:

Extremas [24.47820054 7.08205278]

Let's double check; compute the values of the fit with polyval:

vals = numpy.polyval(poly, t)

6. Double-check: Now, find the maximum and minimum values with argmax and
argmin:

vals = numpy.polyval(poly, t)
print numpy.argmax(vals)
print numpy.argmin(vals)

Chapter 4

[87]

This gives us the expected results. Ok, not quite the same results, but, if we
backtrack to step 1, we can see that t was defined with the arange function:

7
24

7. Plot: Plot the data and the fit it as follows:

plot(t, bhp - vale)
plot(t, vals)
show()

It results in this plot:

Obviously, the smooth line is the fit and the jagged line is the underlying data. It's not that
good a fit, so you might want to try a higher order polynomial.

What just happened?
We fit data to a polynomial with the polyfit function. We learned about the polyval
function that computes the values of a polynomial, the roots function that returns the roots
of the polynomial, and the polyder function that gives back the derivative of a polynomial.

Convenience Functions for Your Convenience

[88]

Have a go hero – improving the fit
There are a number of things you could do to improve the fit. Try a different power as, in this
tutorial, a cubic polynomial was chosen. Consider smoothing the data before fitting it. One
way you could smooth is with a moving average. Examples of simple and exponential moving
average calculations can be found in the previous chapter.

On-balance volume
Volume is a very important variable in investing; it indicates how big a price move is. The
on-balance volume indicator is one of the simplest stock price indicators. It is based on the
close price of the current and previous days and the volume of the current day. For each day,
if the close price today is higher than the close price of yesterday then the value of the on-
balance volume is equal to the volume of today. On the other hand, if today's close price is
lower than yesterday's close price then the value of the on-balance volume indicator is the
difference between the on-balance volume and the volume of today. If the close price did
not change then the value of the on-balance volume is zero.

Time for action – balancing volume
In other words we need to multiply the sign of the close price with the volume. In this
tutorial, we will go over two approaches to this problem, one using the NumPy sign
function, and the other using the NumPy piecewise function.

1. Load the data: Load the BHP data into a close and volume array:

c, v=numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6, 7),
 unpack=True)

Compute the absolute value changes. Calculate the change of the close price with
the diff function. The diff function computes the difference between two
sequential array elements and returns an array containing these differences:

change = numpy.diff(c)
print "Change", change

The changes of the close price are shown as follows:

Change [1.92 -1.08 -1.26 0.63 -1.54 -0.28 0.25 -0.6 2.15
0.69 -1.33 1.16
 1.59 -0.26 -1.29 -0.13 -2.12 -3.91 1.28 -0.57 -2.07 -2.07 2.5
1.18
-0.88 1.31 1.24 -0.59]

Chapter 4

[89]

2. Determine the signs: The NumPy sign function returns the signs for each element
in an array. -1 is returned for a negative number, 1 for a positive number, and 0,
otherwise. Apply the sign function to the change array:

signs = numpy.sign(change)
print "Signs", signs

The signs of the change array are as follows:

Signs [1. -1. -1. 1. -1. -1. 1. -1. 1. 1. -1. 1. 1. -1. -1.
-1. -1. -1.
-1. -1. -1. 1. 1. 1. -1. 1. 1. -1.]

Alternatively, we can calculate the signs with the piecewise function. The
piecewise function, as its name suggests, evaluates a function piece-by-piece. Call
the function with the appropriate return values and conditions:

pieces = numpy.piecewise(change, [change < 0, change > 0], [-1,
 1])
print "Pieces", pieces

The signs are shown again, as follows:

Pieces [1. -1. -1. 1. -1. -1. 1. -1. 1. 1. -1. 1. 1. -1.
-1. -1. -1. -1.
-1. -1. -1. 1. 1. 1. -1. 1. 1. -1.]

Check that the outcome is the same:

print "Arrays equal?", numpy.array_equal(signs, pieces)

And the outcome is as follows:

Arrays equal? True

3. On-balance volume: The on-balance volume depends on the change of the previous
close, so we can not calculate it for the first day in our sample:

print "On balance volume", v[1:] * signs

The on-balance volume is as follows:

[2620800. -2461300. -3270900. 2650200. -4667300. -5359800.
7768400.
 -4799100. 3448300. 4719800. -3898900. 3727700. 3379400.
-2463900.
 -3590900. -3805000. -3271700. -5507800. 2996800. -3434800.
-5008300.
 -7809799. 3947100. 3809700. 3098200. -3500200. 4285600.
3918800.
 -3632200.]

Convenience Functions for Your Convenience

[90]

What just happened?
We computed the on-balance volume that depends on the change of the closing price.
Using the NumPy sign and piecewise functions, we went over two different methods
to determine the sign of the change.

The mode
In statistics, the mode summarizes a set of values, just like an average or median. The mode
is the most frequent value or values. For instance, if we have the values 0, 1, 2, 2, 3, then the
mode would be 2. The mode doesn't have to be a unique number. The mode could consist of
multiple numbers as long as these numbers are the most frequent ones. For example, if we
have the numbers 1, 1, 2, 2, 3, the mode would be 1 and 2.

Time for action – determining the mode of stock returns
When it comes to determining the mode of stock returns we can do two things—we can try
to find the peak of the histogram of said returns, or we can turn the returns into integers and
find the mode of those integers. If we don't do this, it is impossible to determine the mode;
we would have to deal with a large number of unique numbers.

1. Unique numbers: The unique function returns the unique numbers of an array.
Here is an example of how it works:

print "Unique", numpy.unique(numpy.array([2, 2]))

As you would expect, one unique number is returned:

Unique [2]

Now, load the data and find out how many unique stock returns there are:

bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,),
 unpack=True)
bhp_returns = numpy.diff(bhp) / bhp[: -1]
print "BHP returns", bhp_returns
print "Total number", len(bhp_returns), "Unique number",
 len(numpy.unique(bhp_returns))

Just as suspected, there are a lot of unique stock returns; actually, all of them
are unique.

BHP returns [0.02048656 -0.01129235 -0.01332487 0.00675241
-0.01639519 -0.00303063
 0.00271415 -0.00649632 0.02343069 0.00734746 -0.0140592
0.01243701

Chapter 4

[91]

 0.01683787 -0.00270777 -0.01347118 -0.0013761 -0.02247191
-0.04239861
 0.01449439 -0.00636232 -0.0232532 -0.02380679 0.02945335
0.01350423
 0.01163053 -0.00982252 0.01476722 0.01377472 -0.00646504]
Total number 29 Unique number 29

2. Histogram: NumPy has a histogram function that we will use. This method is
sensitive to the number of bins. Set the number of bins to the square root of the
number of array elements (this is a rule of thumb that works quite well):

nbins = numpy.sqrt(len(bhp_returns))

Call the histogram function with the number of bins we calculated. It's shown
as follows:

N, bins = numpy.histogram(bhp_returns, bins=nbins)
print "Counts", N, "Bins", bins

The histogram function returns the number of occurrences within each bin and
the bins themselves:

Counts [1 5 10 9 4] Bins [-0.04239861 -0.02802822 -0.01365783
0.00071256 0.01508295 0.02945335]

Determine the mode by finding the bin corresponding to the highest count in
the histogram:

index_max = N.argmax()
print "mode", bins[index_max]

The mode is as follows:

mode -0.0136578288488

3. Converting to promilles: It is a bit arbitrary whether we should convert the stock
returns to promilles or percentages, as we have integer values. Convert the stock
returns to promilles with the astype function:

bhp_promilles = (bhp_returns * 1000).astype(int)

4. Sort: Sort the values by calling the sort function:

sorted = numpy.sort(bhp_promilles)
print "Sorted", sorted

The sorted values should be as follows:

Sorted [-42 -23 -23 -22 -16 -14 -13 -13 -11 -9 -6 -6 -6 -3
-2 -1 2 6
 7 11 12 13 13 14 14 16 20 23 29]

Convenience Functions for Your Convenience

[92]

5. Indices of changed values: Now, we need to find the indices where values changed:

diffed = numpy.diff(sorted)
#values changed
indices = numpy.where(diffed > 0)
print "Indices where values changed", indices

The indices are as follows:

Indices where values changed (array([0, 2, 3, 4, 5, 7, 8,
9, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 22, 24, 25, 26, 27]),)

6. Number of repeats: Figure out the number of repeats:

number of repeats
repeats = numpy.diff(indices)
print "Repeats", repeats

The repeats that we get are:

Repeats [[2 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 2 2 1 1 1]]

7. Index with the most repeats: Find the index with the most repeats:

most_repeats_index = numpy.argmax(repeats)
print "Most repeats index", most_repeats_index

The index with the most repeats is:

Most repeats index 7

8. Index in the sorted array: Locate the index in the original sorted array of the most
frequent promille value:

index = numpy.ravel(indices)[most_repeats_index + 1]
print "Index", index

The index with the most frequent promille value is:

Index 12

9. The mode from the sorted array: Get the mode. Look at the following code:

print "Mode", sorted[index]

The mode of the array is:

Mode -6

Chapter 4

[93]

What just happened?
We determined the mode of sample values with a histogram and by converting the values to
integers. The most important thing is that we learned about the histogram function.

Simulation
Often, you would want to try something out. Play around, experiment, but preferably
without blowing things up or getting dirty. NumPy is perfect for experimentation. We will use
NumPy to simulate a trading day, without actually losing money. Many people like to buy on
the dip or, in other words, wait for the price of stocks to drop before buying. A variant of that
is to wait for the price to drop a small percentage say 0.1 percent below the opening price of
the day.

Time for action – avoiding loops with vectorize
The vectorize function is a yet another trick to reduce the number of loops in your
programs. We will let it calculate the profit of a single trading day:

1. Load data: First, load the data:

o, h, l, c = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(3,
4, 5, 6), unpack=True)

2. Call vectorize: The vectorize function is the NumPy equivalent of the Python map
function. Call the vectorize function, giving it as an argument the calc_profit
function that we still have to write:

func = numpy.vectorize(calc_profit)

3. Apply func: We can now apply func as if it is a function. Apply the func result that
we got, to the price arrays:

profits = func(o, h, l, c)

4. Write the function: The calc_profit function is pretty simple. First, we try to buy
slightly below the open price. If this is outside of the daily range, then, obviously,
our attempt failed and no profit was made, or we incurred a loss, therefore we will
return 0. Otherwise, we sell at the close price and the profit is just the difference
between the buy price and the close price. Actually, it is more interesting to have a
look at the relative profit:

def calc_profit((open, high, low, close):
 #buy just below the open
 buy = open * float(sys.argv[1])
 # daily range

Convenience Functions for Your Convenience

[94]

 if low < buy < high:
 return (close - buy)/buy
 else:
 return 0
print "Profits", profits

5. Summary of the trades: There are two days with zero profits: there was either no
net gain, or a loss. Select the days with trades and calculate averages:

real_trades = profits[profits != 0]
print "Number of trades", len(real_trades), round(100.0 *
len(real_trades)/len(c), 2), "%"
print "Average profit/loss %", round(numpy.mean(real_trades) *
100, 2)

The trades summary are shown as follows:

Number of trades 28 93.33 %
Average profit/loss % 0.02

6. Winning trades: As optimists, we are interested in winning trades with a gain
greater than zero. Select the days with winning trades and calculate averages:

winning_trades = profits[profits > 0]
print "Number of winning trades", len(winning_trades), round(100.0
 * len(winning_trades)/len(c), 2), "%"
print "Average profit %", round(numpy.mean(winning_trades) * 100,
 2)

The winning trades are:

Number of winning trades 16 53.33 %
Average profit % 0.72

7. Losing trades: As pessimists, we are interested in losing trades with profit less than
zero. Select the days with losing trades and calculate averages:

losing_trades = profits[profits < 0]
print "Number of losing trades", len(losing_trades), round(100.0 *
 len(losing_trades)/len(c), 2), "%"
print "Average loss %", round(numpy.mean(losing_trades) * 100, 2)

The losing trades are:

Number of losing trades 12 40.0 %
Average loss % -0.92

Chapter 4

[95]

What just happened?
We vectorized a function, which is just another way to avoid using loops. We simulated
a trading day with a function, which returned the relative profit of each day's trade. We
printed a summary of the losing and winning trades.

Have a go hero – analyzing consecutive wins and losses
Although the average profit is positive, it is also important to know whether we had to
endure a long streak of consecutive losses. If this is the case, we might be left with little or
no capital, and then the average profit would not matter that much.

Find out if there was such a losing streak. If you want, you can also find out if there was a
prolonged winning streak.

Smoothing
Noisy data is difficult to deal with, so we often need to do some smoothing. Besides
calculating moving averages, we can use one of the NumPy functions to smooth data.

The hanning function is a windowing function formed by a weighted cosine. There are
other window functions that will be covered in greater detail in later chapters.

Time for action – smoothing with the hanning function
We will use the hanning function to smooth arrays of stock returns, as shown in the
following steps:

1. Computing the weights: Call the hanning function to compute weights, for a
certain N length window (in this example, N is 8):

N = int(sys.argv[1])
weights = numpy.hanning(N)
print "Weights", weights

The weights are as follows:

Weights [0. 0.1882551 0.61126047 0.95048443
0.95048443 0.61126047
 0.1882551 0.]

Convenience Functions for Your Convenience

[96]

2. Smoothing the stock returns: Calculate the stock returns for the BHP and VALE
quotes using convolve with normalized weights:

bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,),
 unpack=True)
bhp_returns = numpy.diff(bhp) / bhp[: -1]
smooth_bhp = numpy.convolve(weights/weights.sum(), bhp_returns)
 [N-1:-N+1]
vale = numpy.loadtxt('VALE.csv', delimiter=',', usecols=(6,),
 unpack=True)
vale_returns = numpy.diff(vale) / vale[: -1]
smooth_vale = numpy.convolve(weights/weights.sum(), vale_returns)
 [N-1:-N+1]

3. Plotting: Plotting with Matplotlib:

t = numpy.arange(N - 1, len(bhp_returns))
plot(t, bhp_returns[N-1:], lw=1.0)
plot(t, smooth_bhp, lw=2.0)
plot(t, vale_returns[N-1:], lw=1.0)
plot(t, smooth_vale, lw=2.0)
show()

The chart would appear as follows:

The thin lines on the chart are the stock returns and the thick lines are the result
of smoothing. As you can see, the lines cross a few times. These points might be
important, because the trend might have changed there. Or, at least, the relation
of BHP to VALE might have changed. These turning inflection points probably occur
often, so we might want to project into the future.

Chapter 4

[97]

4. Fitting to polynomials: Fit the result of the smoothing step to polynomials:

K = int(sys.argv[1])
t = numpy.arange(N - 1, len(bhp_returns))
poly_bhp = numpy.polyfit(t, smooth_bhp, K)
poly_vale = numpy.polyfit(t, smooth_vale, K)

5. Find the crossing points: Now, we need to compute for a situation where the
polynomials we found in the previous step are equal to each other. This boils down
to subtracting the polynomials and finding the roots of the resulting polynomial.
Subtract the polynomials using polysub:

poly_sub = numpy.polysub(poly_bhp, poly_vale)
xpoints = numpy.roots(poly_sub)
print "Intersection points", xpoints

The points are shown as follows:

Intersection points [27.73321597+0.j 27.51284094+0.j
24.32064343+0.j
 18.86423973+0.j 12.43797190+1.73218179j 12.43797190-
1.73218179j
 6.34613053+0.62519463j 6.34613053-0.62519463j]

6. Getting the real numbers: The numbers we get are complex; that is not good for us,
unless there is such a thing as imaginary time. Check which numbers are real with
the isreal function:

reals = numpy.isreal(xpoints)
print "Real number?", reals

The result is as follows:

Real number? [True True True True False False False False]

Some of the numbers are real, so select them with the select function. The
select function forms an array by taking elements from a list of choices, based
on a list of conditions:

xpoints = numpy.select([reals], [xpoints])
xpoints = xpoints.real
print "Real intersection points", xpoints

The real intersection points are as follows:

Real intersection points [27.73321597 27.51284094 24.32064343
18.86423973 0. 0. 0. 0.]

Convenience Functions for Your Convenience

[98]

7. Stripping zeroes: We managed to pick up some zeroes. The trim_zeros function
strips the leading and trailing zeros from a one-dimensional array. Get rid of the
zeroes with trim_zeros:

print "Sans 0s", numpy.trim_zeros(xpoints)

The zeroes are gone, and the output is shown as follows:

Sans 0s [27.73321597 27.51284094 24.32064343 18.86423973]

What just happened?
We applied the hanning function to smooth arrays containing stock returns. We subtracted
two polynomials with the polysub function. We checked for real numbers with the isreal
function and selected the real numbers with the select function. Finally, we stripped
zeroes from an array with the strip_zeroes function.

Have a go hero – smoothing variations
Experiment with the other smoothing functions—hamming, blackman, bartlett, and
kaiser. They work more-or-less in the same way as hanning.

Summary
We calculated the correlation of the stock returns of two stocks with the corrcoef function.
As a bonus, a demonstration of the diagonal and trace functions was given, which can
give us the diagonal and trace of a matrix.

We fit data to a polynomial with the polyfit function. We learned about the polyval
function that computes the values of a polynomial, the roots function that returns the
roots of the polynomial, and the polyder function that gives back the derivative of
a polynomial.

Hopefully, we increased our productivity so that we can continue in the next chapter with
matrices and universal functions (ufuncs).

5
Working with Matrices and ufuncs

This chapter covers matrices and universal functions (ufuncs). Matrices
are well known in mathematics and have their representation in NumPy as
well. Universal functions work on arrays, element-by-element, or on scalars.
ufuncs expect a set of scalars as input and produce a set of scalars as output.
Universal functions can typically be mapped to mathematical counterparts,
such as, add, subtract, divide, multiply, and so on. We will also be introduced to
trigonometric, bitwise, and comparison universal functions.

In this chapter, we shall cover the following topics:

 � Matrix creation

 � Matrix operations

 � Basic ufuncs

 � Trigonometric functions

 � Bitwise functions

 � Comparison functions

Matrices
Matrices in NumPy are subclasses of ndarray. Matrices can be created using a special string
format. They are, just like in mathematics, two-dimensional. Matrix multiplication is, as you
would expect, different from the normal NumPy multiplication. The same is true for the
power operator. We can create matrices with the mat, matrix, and bmat functions.

Working with Matrices and ufuncs

[100]

Time for action – creating matrices
Matrices can be created with the mat function. This function does not make a copy if the
input is already a matrix or an ndarray. Calling this function is equivalent to calling
matrix(data, copy=False). We will also demonstrate transposing and inverting matrices.

1. Creating a matrix from a string: Rows are delimited by a semicolon, values by a
space. Call the mat function with the following string to create a matrix:

A = numpy.mat('1 2 3; 4 5 6; 7 8 9')
print "Creation from string", A

The matrix output should be the following matrix:

Creation from string [[1 2 3]
 [4 5 6]
 [7 8 9]]

2. Transposing matrices: Transpose the matrix with the T attribute, as follows:

print "transpose A", A.T

The following is the transposed matrix:

transpose A [[1 4 7]
 [2 5 8]
 [3 6 9]]

3. Inverting matrices: The matrix can be inverted with the I attribute, as follows:

print "Inverse A", A.I

The inverse matrix is as follows (be warned that this is a O(n^3) operation):

Inverse A [[-4.50359963e+15 9.00719925e+15 -4.50359963e+15]
 [9.00719925e+15 -1.80143985e+16 9.00719925e+15]
 [-4.50359963e+15 9.00719925e+15 -4.50359963e+15]]

4. Creating matrices from arrays: Instead of using a string to create a matrix, let's do it
with an array:

print "Creation from array", numpy.mat(numpy.arange(9).reshape(3,
3))

The newly-created array is as follows:

Creation from array [[0 1 2]
 [3 4 5]
 [6 7 8]]

Chapter 5

[101]

What just happened?
We created matrices with the mat function. We transposed the matrices with the T attribute
and inverted them with the I attribute.

Creating a matrix from other matrices
Sometimes we want to create a matrix from other smaller matrices. We can do this with the
bmat function. The b here stands for block matrix.

Time for action – creating a matrix from other matrices
We will create a matrix from two smaller matrices, as follows:

1. Creating the smaller matrices: First create a 2-by-2 identity matrix:

A = numpy.eye(2)
print "A", A

The identity matrix looks like this:

A [[1. 0.]
 [0. 1.]]

Create another matrix like A and multiply by 2:

B = 2 * A
print "B", B

The second matrix is as follows:

B [[2. 0.]
 [0. 2.]]

2. Creating the compound matrix: Create the compound matrix from a string. The
string uses the same format as the mat function; only, you can use matrices instead
of numbers.

print "Compound matrix\n", numpy.bmat("A B; A B")

The compound matrix is shown as follows:

Compound matrix
[[1. 0. 2. 0.]
 [0. 1. 0. 2.]
 [1. 0. 2. 0.]
 [0. 1. 0. 2.]]

Working with Matrices and ufuncs

[102]

What just happened?
We created a block matrix from two smaller matrices, with the bmat function. We gave the
function a string containing the names of matrices instead of numbers.

Pop quiz – defining a matrix with a string
1. What is the row delimiter in a string accepted by the mat and bmat functions?

a. Semicolon

b. Colon

c. Comma

d. Space

Universal functions
Ufuncs expect a set of scalars as input and produce a set of scalars as output. Universal
functions can typically be mapped to mathematical counterparts, such as, add, subtract,
divide, multiply, and so on.

Time for action – creating universal function
We can create a universal function from a Python function with the NumPy frompyfunc
function, as follows:

1. Defining the Python function: Define a Python function that answers the ultimate
question to the universe, existence, and the rest (it's from a book, if you don't know
which one, you can safely ignore this).

def ultimate_answer(a):

So far, nothing special; we gave the function the name ultimate_answer and
defined one parameter, a.

2. Initializing the result: Create a result consisting of all zeros, that has the same shape
as a, with the zeros_like function:

result = numpy.zeros_like(a)

3. Complete the function: Now set the elements of the initialized array to the answer
42 and return the result. The complete function should appear as shown, in the
following code snippet. The flat attribute gives us access to a flat iterator that
allows us to set the value of the array:

Chapter 5

[103]

def ultimate_answer(a):
 result = numpy.zeros_like(a)
 result.flat = 42
 return result

4. Create the universal function: Create a universal function with frompyfunc;
specify 1 as input and 1 as output:

ufunc = numpy.frompyfunc(ultimate_answer, 1, 1)
print "The answer", ufunc(numpy.arange(4))

The result for a one-dimensional array is shown as follows:

The answer [42 42 42 42]

We can do the same for a two-dimensional array by using the following code:

print "The answer", ufunc(numpy.arange(4).reshape(2, 2))

The output for a two dimensional array is shown as follows

The answer [[42 42]
[[42 42]
[42 42]]

What just happened?
We defined a Python function. In this function, we initialized to zero the elements of an
array, based on the shape of an input argument, with the zeros_like function. Then, with
the flat attribute of ndarray, we set the array elements to the ultimate answer, 42.

Universal function methods
How can functions have methods? As we said earlier, universal functions are not functions
but objects representing functions. Universal functions have four methods. They only make
sense for functions such as add. That is, they have two input parameters and return one
output parameter. If the signature of a ufunc does not match this condition, this will result in
a ValueError, so call this method only for binary universal functions. The four methods are
listed as follows:

1. reduce

2. accumulate

3. reduceat

4. outer

Working with Matrices and ufuncs

[104]

Time for action – applying the ufunc methods on add
Let's call the four methods on add.

1. Calling the reduce method: The input array is reduced by applying the universal
function recursively along a specified axis on consecutive elements. For the add
function, the result of reducing is similar to calculating the sum of an array. Call the
reduce method:

a = numpy.arange(9)
print "Reduce", numpy.add.reduce(a)

The reduced array should be as follows:

Reduce 36

2. Calling the accumulate method: The accumulate method also recursively
goes through the input array. But, contrary to the reduce method, it stores the
intermediate results in an array and returns that. The result, in the case of the add
function, is equivalent to calling the cumsum function. Call the accumulate method
on the add function:

print "Accumulate", numpy.add.accumulate(a)

The accumulated array:

Accumulate [0 1 3 6 10 15 21 28 36]

3. Calling the reduceat method: The reduceat method is a bit complicated to explain,
so let's call it and go through its algorithm, step-by-step. The reduceat method
requires as arguments an input array and a list of indices:

print "Reduceat", numpy.add.reduceat(a, [0, 5, 2, 7])

The result is shown as follows:

Reduceat [10 5 20 15]

The first step concerns the indices 0 and 5. This step results in a reduce operation of
the array elements between indices 0 and 5.

print "Reduceat step I", numpy.add.reduce(a[0:5])

The output of step 1 is as follows:

Reduceat step I 10

The second step concerns indices 5 and 2. Since 2 is less than 5, the array element
at index 5 is returned:

print "Reduceat step II", a[5]

Chapter 5

[105]

The second step results in the following output:

Reduceat step II 5

The third step concerns indices 2 and 7. This step results in a reduce operation of
the array elements between indices 2 and 7:

print "Reduceat step III", numpy.add.reduce(a[2:7])

The result of the third step is shown as follows:

Reduceat step III 20

The fourth step concerns index 7. This step results in a reduce operation of the array
elements from index 7 to the end of the array:

print "Reduceat step IV", numpy.add.reduce(a[7:])

The fourth step result is shown as follows:

Reduceat step IV 15

4. Calling the outer method: The outer method returns an array that has a rank which
is the sum of the ranks of its two input arrays. The method is applied to all possible
pairs of the input array elements. Call the outer method on the add function:

print "Outer", numpy.add.outer(numpy.arange(3), a)

The outer sum output result is as follows:

Outer [[0 1 2 3 4 5 6 7 8]
 [1 2 3 4 5 6 7 8 9]
 [2 3 4 5 6 7 8 9 10]]

What just happened?
We applied the four methods, reduce, accumulate, reduceat, and outer, of universal
functions to the add function. Since this is a binary function, no exception was thrown.

Arithmetic functions
The common arithmetic operators +, -, and * are implicitly linked to the add, subtract,
and multiply universal functions. This means that when you use one of those operators
on a NumPy array, the corresponding universal function will get called. Division involves a
slightly more complex process. There are three universal functions that have to do with array
division: divide, true_divide, and floor_division. Two operators correspond to
division: / and //.

Working with Matrices and ufuncs

[106]

Time for action – dividing arrays
Let's see the array division in action:

1. Calling divide: The divide function does truncated integer division and normal
floating-point division:

a = numpy.array([2, 6, 5])
b = numpy.array([1, 2, 3])
print "Divide", numpy.divide(a, b), numpy.divide(b, a)

The result of the divide function is shown as follows:

Divide [2 3 1] [0 0 0]

As you can see, big-time truncation takes place.

2. Calling true_divide: The true_divide function comes closer to the mathematical
definition of division. Integer division returns a floating-point result and no
truncation occurs:

print "True Divide", numpy.true_divide(a, b), numpy.true_divide(b,
a)

The result of the true_divide function is as follows:

True Divide [2. 3. 1.66666667] [0.5
0.33333333 0.6]

3. Calling floor_divide: The floor_divide function always returns an integer result.
It is equivalent to calling the floor function after calling the divide function. The
floor function discards the decimal part of a floating-point number and returns
an integer:

print "Floor Divide", numpy.floor_divide(a, b), numpy.floor_
divide(b, a)
c = 3.14 * b
print "Floor Divide 2", numpy.floor_divide(c, b), numpy.floor_
divide(b, c)

The floor_divide function results in:

Floor Divide [2 3 1] [0 0 0]
Floor Divide 2 [3. 3. 3.] [0. 0. 0.]

4. Using the / operator: By default, the / operator is equivalent to calling the
divide function:

from __future__ import division

However, if this line is found at the beginning of a Python program, the
true_divide function is called instead. So, this code would appear as follows:

print "/ operator", a/b, b/a

Chapter 5

[107]

The result is shown as follows:

/ operator [2. 3. 1.66666667] [0.5
0.33333333 0.6]

5. Using the // operator: The // operator is equivalent to calling the floor_divide
function. For example, look at the following code snippet:

print "// operator", a//b, b//a
print "// operator 2", c//b, b//c

The // operator result is shown as follows:

// operator [2 3 1] [0 0 0]
// operator 2 [3. 3. 3.] [0. 0. 0.]

What just happened?
We found that there are three different NumPy division functions. The divide function
truncates the integer division and normal floating-point division. The true_divide function
always returns a floating-point result without any truncation. The floor_divide function
always returns an integer result; the result is the same that you would get by calling the
divide and floor functions consecutively.

Have a go hero – experimenting with __future__.division
Experiment to confirm the impact of importing __future__.division.

Modulo operation
The modulo or remainder can be calculated using the NumPy mod, remainder, and fmod
functions. Also, one can use the % operator. The main difference among these functions is
how they deal with negative numbers. The odd one out in this group is the fmod function.

Time for action – computing the modulo
Let's call the aforementioned functions:

1. Calling the remainder function: The remainder function returns the remainder of
the two arrays, element-wise. 0 is returned if the second number is 0:

a = numpy.arange(-4, 4)
print "Remainder", numpy.remainder(a, 2)

The result of the remainder function is shown as follows:

Remainder [0 1 0 1 0 1 0 1]

Working with Matrices and ufuncs

[108]

2. Calling the mod function: The mod function does exactly the same as the
remainder function:

print "Mod", numpy.mod(a, 2)

The result of the mod function is shown as follows:

Mod [0 1 0 1 0 1 0 1]

3. Using the % operator: The % operator is just shorthand for the remainder function:

print "% operator", a % 2

The result of the % operator is shown as follows:

% operator [0 1 0 1 0 1 0 1]

4. Calling the fmod function: The fmod function handles negative numbers differently
than mod, fmod, and % do. The sign of the remainder is the sign of the dividend, and
the sign of the divisor has no influence on the results:

print "Fmod", numpy.fmod(a, 2)

The fmod result is shown as follows:

Fmod [0 -1 0 -1 0 1 0 1]

What just happened?
We demonstrated the NumPy mod, remainder, and fmod functions, which compute the
modulo, or remainder.

Fibonacci numbers
The Fibonacci numbers are based on a recurrence relation. It is difficult to express this
relation directly with NumPy code. However, we can express this relation in a matrix form
or use the golden ratio formula. This will introduce the matrix and rint functions. The
matrix function creates matrices and the rint function rounds numbers to the closest
integer, but the result is not integer.

Time for action – computing Fibonacci numbers
The Fibonacci recurrence relation can be represented by a matrix. Calculation of Fibonacci
numbers can be expressed as repeated matrix multiplication:

1. Creating the Fibonacci matrix: Create the Fibonacci matrix as follows:

F = numpy.matrix([[1, 1], [1, 0]])
print "F", F

Chapter 5

[109]

The Fibonacci matrix appears as follows:

F [[1 1]
 [1 0]]

2. Computing a Fibonacci number with the matrix: Calculate the 8th Fibonacci
number (ignoring 0), by subtracting 1 from 8 and taking the power of the matrix.
The Fibonacci number then appears on the diagonal:

print "8th Fibonacci", (F ** 7)[0, 0]

The Fibonacci number is:

8th Fibonacci 21

3. Calculating with the golden ratio formula: The golden ratio formula, better known
as Binet's formula, allows us to calculate Fibonacci numbers with a rounding step at
the end. Calculate the first eight Fibonacci numbers:

n = numpy.arange(1, 9)
sqrt5 = numpy.sqrt(5)
phi = (1 + sqrt5)/2
fibonacci = numpy.rint((phi**n - (-1/phi)**n)/sqrt5)
print "Fibonacci", fibonacci

The Fibonacci numbers are:

Fibonacci [1. 1. 2. 3. 5. 8. 13. 21.]

What just happened?
We computed Fibonacci numbers in two ways. In the process, we learned about the matrix
function that creates matrices. We also learned about the rint function that rounds
numbers to the closest integer but does not change the type to integer.

Have a go hero – timing the calculations
You are probably wondering which approach is faster, so go ahead time it. Create a universal
Fibonacci function with frompyfunc and time it too.

Lissajous curves
All the standard trigonometric functions, such as, sin, cos, tan, and so on are represented
by universal functions in NumPy. Lissajous curves are a fun way of using trigonometry. I
remember producing Lissajous figures on an oscilloscope in the physics lab. Two parametric
equations can describe the figures:

x = A sin(at + π/2)
y = B sin(bt)

Working with Matrices and ufuncs

[110]

Time for action – drawing Lissajous curves
The Lissajous figures are determined by four parameters A, B, a, and b. Let's set A and B to 1
for simplicity:

1. Initialize t: Initialize t with the linspace function from -pi to pi with 201 points:

a = float(sys.argv[1])
b = float(sys.argv[2])
t = numpy.linspace(-numpy.pi, numpy.pi, 201)

2. Calculate x: Calculate x with the sin function and numpy.pi:

x = numpy.sin(a * t + numpy.pi/2)

3. Calculate y: Calculate y with the sin function:

y = numpy.sin(b * t)

4. Plot with Matplotlib: Matplotlib will be covered later in Chapter 9, Plotting with
Matplotlib. Plot as shown here:

plot(x, y)
show()

The result for a = 9 and b = 8:

Chapter 5

[111]

What just happened?
We plotted the Lissajous curve with the aforementioned parametric equations where A=B=1,
a=9 and, b=8. We used the sin and linspace functions as well as the NumPy pi constant.

Square waves
Square waves are also one of those neat things that you can view on an oscilloscope. They
can be approximated pretty well with sine waves; after all, a square wave is a signal that can
be represented by an infinite Fourier series. The formula of the series is as follows:

4sin((2k 1)t)

(2k 1)
k = 1

Time for action – drawing a square wave
We will initialize t just like in the previous tutorial. We need to sum a number of terms. The
higher the number of terms, the more accurate the result; k = 99 should be sufficient. In
order to draw a square wave, follow the ensuing steps:

1. Initialize t and k: We will start by initializing t and k. Set initial values for the
function to 0:

t = numpy.linspace(-numpy.pi, numpy.pi, 201)
k = numpy.arange(1, float(sys.argv[1]))
k = 2 * k - 1
f = numpy.zeros_like(t)

2. Compute the function values: This step should be a straightforward application of
the sin and sum functions:

for i in range(len(t)):
 f[i] = numpy.sum(numpy.sin(k * t[i])/k)
f = (4 / numpy.pi) * f

3. Plotting with Matplotlib: The code to plot is almost identical to the one in the
previous tutorial:

plot(t, f)
show()

Working with Matrices and ufuncs

[112]

The resulting square wave generated with k = 99 is as follows:

What just happened?
We generated a square wave or, at least, a fair approximation of it, using the sin
function. The input values were assembled with linspace and the k values with the
arange function.

Have a go hero – getting rid of the loop
You may have noticed that there is one loop in the code. Get rid of it with NumPy functions
and make sure the performance is also improved.

Sawtooth and triangle waves
Sawtooth and triangle waves are also a phenomenon easily viewed on an oscilloscope. Just
like with square waves, we can define an infinite Fourier series. The triangle waves can be
found by taking the absolute value of a sawtooth wave. The formula for the representation
of a series of sawtooth waves is:

k = 1

2sin(2)kt

k

Chapter 5

[113]

Time for action – drawing sawtooth and triangle waves
We will initialize t just like in the previous tutorial. Again, k = 99 should be sufficient. In
order to draw sawtooth and triangle waves, follow the ensuing steps:

1. Initialize t and k: Set initial values for the function to zero:

t = numpy.linspace(-numpy.pi, numpy.pi, 201)
k = numpy.arange(1, float(sys.argv[1]))
f = numpy.zeros_like(t)

Compute the function values: This should again be a straightforward application
of the sin and sum functions:

for i in range(len(t)):
 f[i] = numpy.sum(numpy.sin(2 * numpy.pi * k * t[i])/k)
f = (-2 / numpy.pi) * f

2. Plotting with Matplotlib: It's easy to plot the sawtooth and triangle waves, since the
value of the triangle wave should be equal to the absolute value of the sawtooth
wave. Plot the waves as shown next:

plot(t, f, lw=1.0)
plot(t, numpy.abs(f), lw=2.0)
show()

In the following figure, the triangle wave is the one with the thicker line:

Working with Matrices and ufuncs

[114]

What just happened?
We drew a sawtooth wave using the sin function. The input values were assembled with
linspace and the k values with the arange function. A triangle wave was derived from
the sawtooth wave by taking the absolute value.

Have a go hero – getting rid of the loop
Your challenge, should you choose to accept it, is to get rid of the loop in the program. It
should be doable with NumPy functions and the performance should double.

Bitwise and comparison functions
Bitwise functions operate on the bits of integers or integer arrays, since they are universal
functions. The operators ^, &, |, <<, >>, and so on, have their NumPy counterparts The same
goes for comparison operators, such as, <, >, ==, and so on. These operators allow you some
clever tricks, which should be good for performance; however, they could make your code
quite unreadable, so use them with care.

Time for action – twiddling bits
We will go over three tricks—checking whether the signs of integers are different,
checking whether a number is a power of 2, and calculating the modulus of a number that
is a power of 2. We will show an operators only notation and one using the corresponding
NumPy functions:

1. Checking signs: The first trick depends on the XOR or ^ operator. The XOR operator is
also called the inequality operator; so, if the sign bit of the two operands is different,
the XOR operation will lead to a negative number. ^ corresponds to the bitwise_
xor function. < corresponds to the less function.

x = numpy.arange(-9, 9)
y = -x
print "Sign different?", (x ^ y) < 0
print "Sign different?", numpy.less(numpy.bitwise_xor(x, y), 0)

The result is shown as follows:

Sign different? [True True True True True True True True
True False True True
 True True True True True True]
Sign different? [True True True True True True True True
True False True True
 True True True True True True]

As expected, all the signs differ, except for zero.

Chapter 5

[115]

2. 'Power of 2' check: A power of 2 is represented by a 1, followed by a series of
trailing zeroes in binary notation. For instance, 10, 100, or 1000. A number one less
than a power of 2 would be represented by a row of ones in binary. For instance,
11, 111, or 1111 (or 3, 7, and 15, in the decimal system). Now, if we bitwise AND
a power of 2, and the integer that is one less than that, then we should get 0. The
NumPy counterpart of & is bitwise_and; the counterpart of == is the equal
universal function.

print "Power of 2?\n", x, "\n", (x & (x - 1)) == 0
print "Power of 2?\n", x, "\n", numpy.equal(numpy.bitwise_and(x,
 (x - 1)), 0)

The result is shown as follows:

Power of 2?
[-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8]
[False False False False False False False False False True True
True
 False True False False False True]
Power of 2?
[-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8]
[False False False False False False False False False True True
True
 False True False False False True]

3. Computing the modulus of 4: This trick actually works when taking the modulus
of integers that are a power of 2, such as, 4, 8, 16, and so on. A bitwise left shift
leads to doubling of values. We saw in the previous step that subtracting one from
a power of 2 leads to a number in binary notation that has a row of ones, such as,
11, 111, or 1111. This basically gives us a mask. Bitwise-ANDing with such a number
gives you the remainder with a power of 2. The NumPy equivalent of << is the
left_shift universal function.

print "Modulus 4\n", x, "\n", x & ((1 << 2) - 1)
print "Modulus 4\n", x, "\n", numpy.bitwise_and(x,
 numpy.left_shift(1, 2) - 1)

The result is shown as follows:

Modulus 4
[-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8]
[3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0]
Modulus 4
[-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8]
[3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0]

Working with Matrices and ufuncs

[116]

What just happened?
We covered three bit-twiddling hacks—checking whether the signs of integers are different,
checking whether a number is a power of 2, and calculating the modulus of a number that is
a power of 2. We saw the NumPy counterparts of the operators ^, &, <<, and <.

Summary
We learned, in this chapter, about matrices and universal functions. We covered how to
create matrices and how universal functions work. We had a brief introduction to arithmetic,
trigonometric, bitwise, and comparison universal functions.

In the next chapter, we shall cover NumPy modules.

6
Move Further with NumPy Modules

NumPy has a number of modules that have been inherited from its predecessor,
Numeric . Some of these packages have a SciPy counterpart, which may have
fuller functionality. This will be discussed in a later chapter. The numpy.dual
package contains functions that are defined both in NumPy and SciPy. The
packages discussed in this chapter are also part of the numpy.dual package.

In this chapter, we shall cover the following topics:

 � The linalg package

 � The fft package

 � Random numbers

 � Continuous and discrete distributions

Linear algebra
The numpy.linalg package contains linear algebra functions. With this module, you can
invert matrices, calculate eigenvalues, solve linear equations, and determine determinants
among other things.

Time for action – inverting matrices
The inverse of a matrix A in linear algebra is the matrix A-1, which, when multiplied with the
original matrix, is equal to the identity matrix I. This can be written as follows:

A A-1 = I

Move Further with NumPy Modules

[118]

The inv function in the numpy.linalg package can do this for us. Let's invert an example
matrix. To invert matrices, follow the ensuing steps:

1. Create the example matrix: We will create the example matrix with the mat
function that we used in previous chapters.

A = numpy.mat("0 1 2;1 0 3;4 -3 8")
print "A\n", A

The A matrix is shown as follows:

A
[[0 1 2]
 [1 0 3]
 [4 -3 8]]

2. Invert the matrix: Now, we can see the inv function in action.

inverse = numpy.linalg.inv(A)
print "inverse of A\n", inverse

The inverse matrix is shown as follows:

inverse of A
[[-4.5 7. -1.5]
 [-2. 4. -1.]
 [1.5 -2. 0.5]]

If the matrix is singular, or not square, a LinAlgError is raised. If you want, you
can check the result manually. This is left as an exercise for the reader.

3. Check by multiplication: Let's check what we get when we multiply the original
matrix with the result of the inv function:

print "Check\n", A * inverse

The result is the identity matrix, as expected.

Check
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

What just happened?
We calculated the inverse of a matrix with the inv function of the numpy.linalg package.
We checked, with matrix multiplication, whether this is indeed the inverse matrix.

Chapter 6

[119]

Pop quiz – creating a matrix
1. Which function can create matrices?

a. array

b. create_matrix

c. mat

d. vector

Have a go hero – inverting your own matrix
Create your own matrix and invert it. The inverse is only defined for square matrices. The
matrix must be square and invertible; otherwise, a LinAlgError exception is raised.

Solving linear systems
The numpy.linalg function solve solves systems of linear equations of the form Ax = b;
here A is a matrix, b can be 1D or 2D array, and x is an unknown variable. We will see the
dot function in action. This function returns the dot product of two floating-point arrays.

Time for action – solving a linear system
Let's solve an example of linear system. To solve a linear system, follow the ensuing steps:

1. Create the matrices A and b: Let's create A and b:

A = numpy.mat("1 -2 1;0 2 -8;-4 5 9")
print "A\n", A
b = numpy.array([0, 8, -9])
print "b\n", b

The matrices A and b are shown as follows:

A
[[1 -2 1]
 [0 2 -8]
 [-4 5 9]]
b [0 8 -9]

2. Call the solve function: Solve this linear system with the solve function:

x = numpy.linalg.solve(A, b)
print "Solution", x

The solution of the linear system is as follows:

Solution [29. 16. 3.]

Move Further with NumPy Modules

[120]

3. Check with the dot function: Check whether the solution is correct with the dot
function:

print "Check\n", numpy.dot(A , x)

The result is as expected:

Check
[[0. 8. -9.]]

What just happened?
We solved a linear system using the solve function from the NumPy linalg module and
checked the solution with the dot function.

Finding eigenvalues and eigenvectors
Eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-dimensional
matrix and x is a one-dimensional vector. Eigenvectors are vectors corresponding to
eigenvalues. The eigvals function in the numpy.linalg package calculates eigenvalues.
The eig function returns a tuple containing eigenvalues and eigenvectors.

Time for action – determining eigenvalues and eigenvectors
Let's calculate the eigenvalues of a matrix:

1. Create the matrix: Create a matrix as shown.

A = numpy.mat("3 -2;1 0")
print "A\n", A

The matrix we created looks like this:

A
[[3 -2]
 [1 0]]

2. Calculate eigenvalues with the eig function: Call the eig function.

print "Eigenvalues", numpy.linalg.eigvals(A)

The eigenvalues of the matrix are as follows:

Eigenvalues [2. 1.]

3. Getting eigenvalues and eigenvectors with eig: Determine eigenvalues and
eigenvectors with the eig function. This function returns a tuple, where the first
element contains eigenvalues and the second element contains corresponding
eigenvectors, arranged column-wise.

Chapter 6

[121]

eigenvalues, eigenvectors = numpy.linalg.eig(A)
print "First tuple of eig", eigenvalues
print "Second tuple of eig\n", eigenvectors

The eigenvalues and eigenvectors will be:

First tuple of eig [2. 1.]
Second tuple of eig
[[0.89442719 0.70710678]
 [0.4472136 0.70710678]]

4. Check the result: Check the result with the dot function by calculating the right and
left side of the eigenvalues equation Ax = ax.

for i in range(len(eigenvalues)):
 print "Left", numpy.dot(A, eigenvectors[:,i])
 print "Right", eigenvalues[i] * eigenvectors[:,i]
 print

The output is as follows:

Left [[1.78885438]
 [0.89442719]]
Right [[1.78885438]
 [0.89442719]]
Left [[0.70710678]
 [0.70710678]]
Right [[0.70710678]
 [0.70710678]]

What just happened?
We found the eigenvalues and eigenvectors of a matrix with the eigvals and eig functions
of the numpy.linalg module. We checked the result using the dot function.

Singular value decomposition
Singular value decomposition is a type of factorization that decomposes a matrix into a
product of three matrices. The svd function in the numpy.linalg package can perform this
decomposition. This function returns two orthogonal matrices and the singular values of the
middle matrix:

vU *=M

Move Further with NumPy Modules

[122]

Time for action – decomposing a matrix
It's time to decompose a matrix with the singular value decomposition. In order to
decompose a matrix, follow the ensuing steps:

1. Create a matrix: First, create a matrix as shown.

A = numpy.mat("4 11 14;8 7 -2")
print "A\n", A

The matrix we created looks like this:

A
[[4 11 14]
 [8 7 -2]]

2. Decompose the matrix: Decompose the matrix with the svd function.

U, Sigma, V = numpy.linalg.svd(A, full_matrices=False)
print "U"
print U
print "Sigma"
print Sigma
print "V"
print V

The result is a tuple containing the two orthogonal matrices U and V on the left and
right and the singular values of the middle matrix.

U
[[-0.9486833 -0.31622777]
 [-0.31622777 0.9486833]]
Sigma
[18.97366596 9.48683298]
V
[[-0.33333333 -0.66666667 -0.66666667]
 [0.66666667 0.33333333 -0.66666667]]

3. Check the decomposition by matrix multiplication: We do not actually have the
middle matrix—we only have the diagonal values. The other values are all 0. We can
form the middle matrix with the diag function. Multiply the three matrices. This is
shown as follows:

print "Product\n", U * numpy.diag(Sigma) * V

The product of the three matrices looks like this:

Product
[[4. 11. 14.]
 [8. 7. -2.]]

Chapter 6

[123]

What just happened?
We decomposed a matrix and checked the result by matrix multiplication. We used the svd
function from the NumPy linalg module.

Pseudo inverse
The Moore-Penrose pseudo inverse of a matrix can be computed with the pinv
function of the numpy.linalg module (see http://en.wikipedia.org/wiki/
Moore%E2%80%93Penrose_pseudoinverse). The pseudo inverse is calculated using its
singular value decomposition. The inv function only accepts square matrices; the pinv
function does not have this restriction.

Time for action – computing the pseudo inverse of a matrix
Let's compute the pseudo inverse of a matrix:

1. Create a matrix: First, create a matrix as shown.

A = numpy.mat("4 11 14;8 7 -2")
print "A\n", A

The matrix we created looks like this:

A
[[4 11 14]
 [8 7 -2]]

2. Compute the pseudo inverse: Calculate the pseudo inverse matrix with the pinv
function as shown.

pseudoinv = numpy.linalg.pinv(A)
print "Pseudo inverse\n", pseudoinv

The pseudo inverse is as follows:

Pseudo inverse
[[-0.00555556 0.07222222]
 [0.02222222 0.04444444]
 [0.05555556 -0.05555556]]

3. Multiply the matrices: Multiply the original and pseudo inverse matrices.

print "Check", A * pseudoinv

What we get is not an identity matrix, but it comes close to it:

Check [[1.00000000e+00 0.00000000e+00]
 [8.32667268e-17 1.00000000e+00]]

Move Further with NumPy Modules

[124]

What just happened?
We computed the pseudo inverse of a matrix with the pinv function of the numpy.linalg
module. The check by matrix multiplication resulted in a matrix that is approximately an
identity matrix.

Determinants
The determinant is a value associated with a matrix. It is used throughout mathematics. The
numpy.linalg module has a det function that returns the determinant of a matrix.

Time for action – calculating the determinant of a matrix
To calculate the determinant of a matrix, follow the ensuing steps:

1. Create a matrix: Create the matrix as shown:

A = numpy.mat("3 4;5 6")
print "A\n", A

The matrix we created is shown as follows:

A
[[3. 4.]
 [5. 6.]]

2. Determine the determinant: Compute the determinant with the det function:

print "Determinant", numpy.linalg.det(A)

The determinant is shown as follows:

Determinant -2.0

What just happened?
We calculated the determinant of a matrix with the det function from the numpy.linalg
module.

Fast Fourier transform
NumPy has a module called fft that offers fast Fourier transform functionality. A lot of the
functions in this module are paired; this means that, for many functions, there is a function
that does the inverse operation. For instance, the fft and ifft function.

Chapter 6

[125]

Time for action – calculating the Fourier transform
First, we will create a signal to transform. In order to calculate the Fourier transform, follow
the ensuing steps:

1. Create the input signal: Create a cosine wave with 30 points, as follows.

x = numpy.linspace(0, 2 * numpy.pi, 30)
wave = numpy.cos(x)

2. Transform the signal: Transform the cosine wave with the fft function.

transformed = numpy.fft.fft(wave)

3. Apply the inverse transform: Apply the inverse transform with the ifft function. It
should approximately return the original signal.

print numpy.all(numpy.abs(numpy.fft.ifft(transformed) - wave) < 10
** -9)

The result is shown as follows:

True

4. Plot the transform: Plot the transformed signal with Matplotlib:

plot(transformed)
show()

The resulting diagram shows the fast Fourier Transform:

Move Further with NumPy Modules

[126]

What just happened?
We applied the fft function to a cosine wave. After applying the ifft function, we got our
signal back.

Shifting
The fftshift function of the numpy.linalg module shifts zero-frequency components to
the center of a spectrum. The ifftshift function reverses this operation.

Time for action – shifting frequencies
We will create a signal, transform it, and then shift the signal. In order to shift the
frequencies, follow the ensuing steps:

1. Create the input signal: Create a cosine wave with 30 points.

x = numpy.linspace(0, 2 * numpy.pi, 30)
wave = numpy.cos(x)

2. Transform the signal: Transform the cosine wave with the fft function.

transformed = numpy.fft.fft(wave)

3. Shift the signal: Shift the signal with the fftshift function.

shifted = numpy.fft.fftshift(transformed)

4. Reverse the shift: Reverse the shift with the ifftshift function. This should undo
the shift.

print numpy.all((numpy.fft.ifftshift(shifted) - transformed) < 10
** -9)

The result is shown as follows:

True

5. Plot: Plot the signal and transform it with Matplotlib.

plot(transformed, lw=2)
plot(shifted, lw=3)
show()

Chapter 6

[127]

The following diagram shows the shift in the fast Fourier transform:

What just happened?
We applied the fftshift function to a cosine wave. After applying the ifftshift
function, we got our signal back.

Random numbers
The random numbers related functions can be found in the NumPy random module. The
core random number generator is based on the Mersenne Twister algorithm. Random
numbers can be generated from discrete or continuous distributions. The distribution
functions have an optional size parameter, which tells NumPy how many numbers to
generate. You can specify either an integer or a tuple as size. This will result in an array filled
with random numbers of appropriate shape. Discrete distributions include the geometric,
hypergeometric, and binomial distributions.

Time for action – gambling with the binomial
The binomial distribution models the number of successes in an integer number of
independent trials of an experiment, where the probability of success in each experiment
is a fixed number. Imagine a 17th-century gambling house where you can bet on flipping of
pieces of eight. Nine coins are flipped. If less than five are heads, then you lose one piece of
eight, otherwise you win one. Let's simulate this, starting with 1000 coins in our possession.
We will use the binomial function from the random module for that purpose.

Move Further with NumPy Modules

[128]

In order to understand the binomial function, look at the following section:

1. Calling the binomial function: Initialize an array, which represents the cash balance,
to zeros. Call the binomial function with a size of 10000. This represents 10000
coin flips in our casino.

cash = numpy.zeros(10000)
cash[0] = 1000
outcome = numpy.random.binomial(9, 0.5, size=len(cash))

2. Updating the cash balance: Go through the outcomes of the coin flips and update
the cash array. Print the minimum and maximum of the outcome, just to make sure
we don't have any strange outliers.

for i in range(1, len(cash)):
 if outcome[i] < 5:
 cash[i] = cash[i - 1] - 1
 elif outcome[i] < 10:
 cash[i] = cash[i - 1] + 1
 else:
 raise AssertionError("Unexpected outcome " + outcome)
print outcome.min(), outcome.max()

As expected, the values are between 0 and 9:

0 9

3. Plot: Plot the cash array with Matplotlib:

plot(numpy.arange(len(cash)), cash)
show()

As you can see in the following diagram, our cash balance performs a random walk:

Chapter 6

[129]

What just happened?
We did a random walk experiment using the binomial function from the NumPy
random module.

Hypergeometric distribution
The hypergeometric distribution models a jar with two types of objects in it. The model
tells us how many objects of one type we can get if we take a specified number of items out
of the jar without replacing them. The NumPy random module has a hypergeometric
function that simulates this situation.

Time for action – simulating a game show
Imagine a game show where every time the contestants answer a question correctly, they
get to pull three balls from a jar and then put them back. Now there is a catch, there is one
ball in there that is bad. Every time it is pulled out the contestants lose six points. If however,
they manage to get out three of the twenty-five normal balls, they get one point. So, what is
going to happen if we have a 100 questions in total? In order to get a solution for this, look at
the following section:

1. Initialize the outcomes of the game: Initialize the outcome of the game with the
hypergeometric function.

points = numpy.zeros(100)
outcomes = numpy.random.hypergeometric(25, 1, 3, size=len(points))

2. Simulate the game: Set the scores based on the outcomes from the previous step.

for i in range(len(points)):
 if outcomes[i] == 3:
 points[i] = points[i - 1] + 1
 elif outcomes[i] == 2:
 points[i] = points[i - 1] - 6
 else:
 print outcomes[i]

3. Plot the points: Plot the points array with Matplotlib.

plot(numpy.arange(len(points)), points)
show()

Move Further with NumPy Modules

[130]

The following diagram shows how the scoring evolved:

What just happened?
We simulated a game show using the hypergeometric function from the NumPy random
module. The game scoring depends on how many good and how many bad balls are pulled
out of a jar in each session.

Continuous distributions
Continuous distributions are modeled by the probability density functions (pdf). The
probability for a certain interval is determined by integration of the probability density
function. The NumPy random module has a number of functions that represent
continuous distributions—beta, chisquare, exponential, f, gamma, gumbel,
laplace, lognormal, logistic, multivariate_normal, noncentral_chisquare,
noncentral_f, normal, and others.

Time for action – drawing a normal distribution
Random numbers can be generated from a normal distribution and their distribution may be
visualized with a histogram. To draw a normal distribution, follow the ensuing steps:

1. Generate values: Generate random numbers using the normal function from the
random NumPy module.

N=10000
normnal_values = numpy.random.normal(size=N)

Chapter 6

[131]

2. Draw the histogram and theoretical pdf: Draw the histogram and theoretical pdf
with a center value of 0 and standard deviation of 1. We will use Matplotlib for
this purpose.

dummy, bins, dummy = matplotlib.pyplot.hist(normal_values,
 numpy.sqrt(N), normed=True, lw=1)
sigma = 1
mu = 0
matplotlib.pyplot.plot(bins, 1/(sigma * numpy.sqrt(2 * numpy.pi))
 * numpy.exp(- (bins - mu)**2 / (2 * sigma**2)),lw=2)
matplotlib.pyplot.show()

In the following diagram, we see the familiar bell curve:

What just happened?
We visualized the normal distribution using the normal function from the random NumPy
module. We did this by drawing the bell curve and a histogram of randomly-generated values.

Lognormal distribution
A lognormal distribution is a distribution of a variable whose natural logarithm is
normally distributed. The lognormal function of the random NumPy module models
this distribution.

Move Further with NumPy Modules

[132]

Time for action – drawing the lognormal distribution
Let's visualize the lognormal distribution and its probability density function with
a histogram:

1. Generate: Generate random numbers using the normal function from the random
NumPy module.

N=10000
lognormal_values = numpy.random.lognormal(size=N)

2. Draw the histogram and theoretical pdf: Draw the histogram and theoretical pdf
with a center value of 0 and standard deviation of 1. We will use Matplotlib for this
purpose:

dummy, bins, dummy = matplotlib.pyplot.hist(lognormal_values,
 numpy.sqrt(N), normed=True, lw=1)
sigma = 1
mu = 0
x = numpy.linspace(min(bins), max(bins), len(bins))
pdf = numpy.exp(-(numpy.log(x) - mu)**2 / (2 * sigma**2))/ (x *
 sigma * numpy.sqrt(2 * numpy.pi))
matplotlib.pyplot.plot(x, pdf,lw=3)
matplotlib.pyplot.show()

The fit of the histogram and theoretical pdf is excellent, as you can see in the
following diagram:

Chapter 6

[133]

What just happened?
We visualized the lognormal distribution using the lognormal function from the random
NumPy module. We did this by drawing the curve of the theoretical probability
density function and a histogram of randomly-generated values.

Summary
We learned a lot in this chapter about NumPy modules. We covered linear algebra, the Fast
Fourier transform, continuous and discrete distributions, and random numbers.

In the next chapter, we shall cover specialized routines. These are functions that you
probably would not use often, but are very useful when you do need them.

7
Peeking Into Special Routines

As NumPy users, we sometimes find ourselves having special needs.
Fortunately, NumPy provides for most of our needs. This chapter describes
some of the more specialized NumPy functions.

In this chapter we will cover the following topics:

 � Sorting and searching

 � Special functions

 � Financial utilities

 � Window functions

Sorting
NumPy has several sorting routines:

 � The sort function returns a sorted array

 � The lexsort function performs sorting with a list of keys

 � The argsort function returns the indices that would sort an array

 � The ndarray class has a sort method that performs in place sorting

 � The msort function sorts an array along the first axis

 � The sort_complex function sorts complex numbers by their real part and then
their imaginary part

Peeking Into Special Routines

[136]

Time for action – sorting lexically
The NumPy lexsort function returns an array of indices corresponding to lexically sorting
an array. We need to give the function an array or tuple of sort keys:

1. Loading the data: Now for something completely different. Let's go back to
Chapter 3, Get into Terms with Commonly Used Functions. In that chapter we used
stock price data of AAPL. This is by now pretty old data. We will load the close prices
and the always complex dates. In fact, we will need a converter function just for
the dates:

def datestr2num(s):
 return datetime.datetime.strptime(s, "%d-%m-%Y").toordinal()

dates,closes=numpy.loadtxt('AAPL.csv', delimiter=',',
 usecols=(1, 6), converters={1:datestr2num}, unpack=True)

2. Sorting lexically: Sort the names lexically with the lexsort function. The data is
already sorted by date, but we will now sort it by close as well:

indices = numpy.lexsort((dates, closes))

print "Indices", indices
print ["%s %s" % (datetime.date.fromordinal(dates[i]),
 closes[i]) for i in indices]

The code prints:

['2011-01-28 336.1', '2011-02-22 338.61', '2011-01-31 339.32',
'2011-02-23 342.62', '2011-02-24 342.88', '2011-02-03 343.44',
'2011-02-02 344.32', '2011-02-01 345.03', '2011-02-04 346.5',
'2011-03-10 346.67', '2011-02-25 348.16', '2011-03-01 349.31',
'2011-02-18 350.56', '2011-02-07 351.88', '2011-03-11 351.99',
'2011-03-02 352.12', '2011-03-09 352.47', '2011-02-28 353.21',
'2011-02-10 354.54', '2011-02-08 355.2', '2011-03-07 355.36',
'2011-03-08 355.76', '2011-02-11 356.85', '2011-02-09 358.16',
'2011-02-17 358.3', '2011-02-14 359.18', '2011-03-03 359.56',
'2011-02-15 359.9', '2011-03-04 360.0', '2011-02-16 363.13']

What just happened?
We sorted the close prices of AAPL lexically using the NumPy lexsort function. The
function returned the indices corresponding with sorting the array.

Have a go hero – trying a different sort order
We sorted using the dates, close price sort order. Try a different order. Generate random
numbers using the random module we learned about in the previous chapter and sort those
using lexsort.

Chapter 7

[137]

Complex numbers
Complex numbers are numbers that have a real and imaginary part. As you remember from
previous chapters, NumPy has special complex datatypes that represent complex numbers
by two floating point numbers. These numbers can be sorted using the NumPy sort_
complex function. This function sorts the real part first and then the imaginary part.

Time for action – sorting complex numbers
We will create an array of complex numbers and sort it:

1. Generating random complex numbers: Generate five random numbers for the
real part of the complex numbers and five numbers for the imaginary part. Seed
the random generator to 42:

numpy.random.seed(42)
complex_numbers = numpy.random.random(5) + 1j * numpy.random.
random(5)
print "Complex numbers\n", complex_numbers

2. Calling sort_complex on the random numbers: Call the sort_complex function to
sort the complex numbers we generated in the previous step:

print "Sorted\n", numpy.sort_complex(complex_numbers)

The sorted numbers would be:

Sorted

[0.39342751+0.34955771j 0.40597665+0.77477433j
0.41516850+0.26221878j

 0.86631422+0.74612422j 0.92293095+0.81335691j]

What just happened?
We generated random complex numbers and sorted them using the sort_complex function.

Pop quiz – generating random numbers
Which NumPy module deals with random numbers?

 � Randnum

 � random

 � randomutil

 � rand

Peeking Into Special Routines

[138]

Searching
NumPy has several functions that can search through arrays:

 � The argmax function gives the indices of the maximum values of an array.

 � The nanargmax function does the same but ignores NaN values.

 � The argmin and nanargmin functions provide similar functionality but pertaining
to minimum values.

 � The argwhere function searches for non-zero values and returns the corresponding
indices grouped by element.

 � The searchsorted function tells you the index in an array where a specified
value could be inserted to maintain the sort order. It uses binary search, which
is a O(log n) algorithm.

 � The extract function retrieves values from an array based on a condition.

Time for action – using searchsorted
The searchsorted function allows us to get the index of a value in a sorted array, where it
could be inserted so that the array remains sorted. An example should make this clear:

1. Creating a sorted array: To demonstrate we will need an array that is sorted. Create
an array with arange, which of course is sorted.

a = numpy.arange(5)

2. Calling searchsorted: Time to call the searchsorted function.

indices = numpy.searchsorted(a, [-2, 7])
print "Indices", indices

The indices that should maintain the sort order.

Indices [0 5]

3. Constructing the full array: Let's construct the full array with the insert function.

print "The full array", numpy.insert(a, indices, [-2, 7])

This gives us the full array:

The full array [-2 0 1 2 3 4 7]

What just happened?
The searchsorted function gave us indices 5 and 0 for 7 and -2. With these indices, we
would make the array [-2, 0, 1, 2, 3, 4, 7]— so the array remains sorted.

Chapter 7

[139]

Array elements extraction
The NumPy extract function allows us to extract items from an array based on a condition.

Time for action – extracting elements from an array
Lets' extract the even elements from an array:

1. Create the array with the arange function:

a = numpy.arange(7)

2. Create the condition that selects the even elements:

condition = (a % 2) == 0

3. Extract the even elements based on our condition with the extract function:

print "Even numbers", numpy.extract(condition, a)

Giving us the even numbers as required:

Even numbers [0 2 4 6]

What just happened?
We extracted the even elements from an array based on a Boolean condition with the
NumPy extract function.

Financial functions
NumPy has a number of financial utilities functions:

 � The fv function calculates the so called future value

 � The pv function computes the present value

 � The npv function returns the net present value

 � The pmt function computes the payment against loan principal plus interest

 � The irr function calculates the internal rate of return

 � The mirr function calculates the modified internal rate of return

 � The nper function returns the number of periodic payments

 � The rate function calculates the rate of interest

Peeking Into Special Routines

[140]

Time for action – determining future value
The future value depends on four parameters—the interest rate, the number of periods,
a periodic payment, and the present value. In this tutorial, let's take an interest rate of 3
percent, quarterly payment of 10 for 5 years and present value of 1000:

1. Calculating the future value: Call the fv function with the appropriate values:

print "Future value", numpy.fv(0.03/4, 5 * 4, -10, -1000)

The future value is:

Future value 1376.09633204

What just happened?
We calculated the future value using the NumPy fv function starting with a present value of
1000, interest rate of 3 percent and quarterly payments of 10 for 5 years.

Present value
The NumPy pv function can calculate the present value. This function mirrors the fv
function and requires the interest rate, number of periods, and the periodic payment
as well, but here we start with the future value.

Time for action – getting the present value
Let's reverse— compute the present value with numbers from the previous tutorial:

1. Calculating the present value: Plug in the figures from the previous Time for
action tutorial.

print "Present value", numpy.pv(0.03/4, 5 * 4, -10, 1376.09633204)

This gives us 1000 as expected apart from a tiny numerical error. Actually it is not an
error but a representation issue. We are dealing here with outgoing cash flow, that is
the reason for the negative value:

Present value -999.999999999

What just happened?
We did the reverse computation of the previous Time for action tutorial to get the present
value from the future value. This was done with the NumPy pv function.

Chapter 7

[141]

Net present value
The NumPy npv function returns the net present value of cash flows. The function requires
two arguments, the rate and an array representing the cash flows.

Time for action – calculating the net present value
We will calculate the net present value for a random generated cash flow series:

1. Generate the random cash flow series: Generate five random values for the cash
flow series. Insert -100 as start value.

cashflows = numpy.random.randint(100, size=5)
cashflows = numpy.insert(cashflows, 0, -100)
print "Cashflows", cashflows

The cash flows would be:

Cashflows [-100 38 48 90 17 36]

2. Calculating net present value: Call the npv function to calculate the net present
value from the cash flow series we generated in the previous step. Use a rate of 3
percent.

print "Net present value", numpy.npv(0.03, cashflows)

The net present value:

Net present value 107.435682443

What just happened?
We computed the net present value from a random generated cash flow series with the
NumPy npv function.

Internal rate of return
The NumPy irr function returns the internal rate of return for a given cash flow series.

Peeking Into Special Routines

[142]

Time for action – determining the internal rate of return
Let's reuse the cash flow series from the previous Time for action tutorial:

1. Calling the irr function: Call the irr function with the cash flow series from the
previous Time for action tutorial:

print "Internal rate of return", numpy.irr([-100, 38, 48, 90,
 17, 36])

The internal rate of return:

Internal rate of return 0.373420226888

What just happened?
We calculated the internal rate of return from the cash flow series of the previous Time for
action tutorial. The value was given by the NumPy irr function.

Periodic payments
The NumPy pmt function allows you to compute periodic payments for a loan based on an
interest rate and the number of periodic payments.

Time for action – calculating the periodic payments
Suppose you have a loan of 1 million with interest rate of 10 percent. You have 30 years to
pay the loan back. How much do you have to pay each month? Let's find out:

1. Call the pmt function with the values mentioned above:

print "Payment", numpy.pmt(0.01/12, 12 * 30, 10000000)

The monthly payment would be:

Payment -32163.9520447

What just happened?
We calculated the monthly payment for a loan of 1 million at an annual rate of 10 percent.
Given that we have 30 years to repay the loan, the pmt function tells us that we need to pay
32163.9520447 per month.

Chapter 7

[143]

Number of payments
The NumPy nper function tells us how many periodic payments are necessary to pay off a
loan. The required parameters are the interest rate of the loan, the fixed amount periodic
payment, and the present value.

Time for action – determining the number of periodic payments
Consider a loan of 9000 at a rate of 10 percent with fixed monthly payments of 100:

1. Getting the number of payments: Find out how many payments are required with
the NumPy nper function:

print "Number of payments", numpy.nper(0.10/12, -100, 9000)

The number of payments would be:

Number of payments 167.047511801

What just happened?
We determined the number of payments needed to pay off a loan of 9000 with an interest rate
of 10 percent and monthly payments of 100. The number of payments returned was 167.

Interest rate
The NumPy rate function calculates the interest rate given the number of periodic
payments, the payment amount or amounts, the present value, and future value.

Time for action – figuring out the rate
Let's take the values from the previous Time for action tutorial and reverse compute the
interest rate from the other parameters:

1. Determining the rate: Fill in the numbers from the previous Time for action tutorial:

print "Interest rate", 12 * numpy.rate(167, -100, 9000, 0)

The interest rate is approximately 10 percent as expected:

Interest rate 0.0999756420664

Peeking Into Special Routines

[144]

What just happened?
We used the NumPy rate function and the values from the previous Time for action tutorial
to compute the interest rate of the loan. Ignoring the rounding errors, we got the initial 10
percent we started with.

Window functions
Window functions are mathematical functions commonly used in signal processing. These
functions are defined to be 0 outside a specified domain. NumPy has a number of window
functions: bartlett, blackman, hamming, hanning, and kaiser. An example of the
hanning function can be found in Chapter 4, Convenience Functions for Your Convenience.

Time for action – plotting the Bartlett window
The Bartlett window is a triangular smoothing window:

1. Calculating the Bartlett window: Call the NumPy bartlett function:

window = numpy.bartlett(42)

2. Plotting the Bartlett window: Plotting is easy with Matplotlib:

plot(window)
show()

Here is the Bartlett window, which is triangular, as expected:

Chapter 7

[145]

What just happened?
We plotted the Bartlett window with the NumPy bartlett function.

Blackman window
The Blackman window is formed by summing the first three terms of cosines:

w() = 0.42-0.5cos(2 n/M)+0.08cos(4 n/M)n

The NumPy blackman function returns the Blackman window. The only parameter is the
number of points in the output window. If this number is 0 or less than 0, an empty array
is returned.

Time for action – smoothing stock prices with
the Blackman window

Let's smooth the close prices from the small AAPL stock prices datafile:

1. Smoothing with the Blackman window: Load the data into a NumPy array. Call the
NumPy blackman function to form a window and then use this window to smooth
the price signal:

closes=numpy.loadtxt('AAPL.csv', delimiter=',', usecols=(6,),
converters={1:datestr2num}, unpack=True)
N = int(sys.argv[1])
window = numpy.blackman(N)
smoothed = numpy.convolve(window/window.sum(),
 closes, mode='same')

2. Plotting the Blackman window: Plot the smoothed prices with Matplotlib. We
will omit in this example the first five data points and the last five data points. The
reason for this is that there is a strong boundary effect:

plot(smoothed[N:-N], lw=2, label="smoothed")
plot(closes[N:-N], label="closes")
legend(loc='best')
show()

Peeking Into Special Routines

[146]

The closing prices of AAPL smoothed with the Blackman window should appear
as follows:

What just happened?
We plotted the closing price of AAPL from our sample data file that was smoothed using the
Blackman window with the NumPy blackman function.

Hamming window
The Hamming window is formed by a weighted cosine. The formula is as follows:

w(n) cos0.54+0.46
M-1

2 n((0 n< < M-1

The NumPy hamming function returns the Hamming window. The only parameter is the
number of points in the output window. If this number is 0 or less than 0, an empty array
is returned.

Chapter 7

[147]

Time for action – plotting the Hamming window
Let's plot the Hamming window:

1. Calculating the Hamming window: Call the NumPy hamming function.

window = numpy.hamming(42)

2. Plotting the Hamming window: Plot the window with Matplotlib.

plot(window)
show()

The Hamming window plot is as follows:

What just happened?
We plotted the Hamming window with the NumPy hamming function

Peeking Into Special Routines

[148]

Kaiser window
The Kaiser window is formed by the Bessel function. The formula is as follows:

w(n) I0
1- 4n2

(M-1)
2 ((/I0()

Here I0 is the zero order Bessel function The NumPy kaiser function returns the Kaiser
window. The first parameter is the number of points in the output window. If this number is
0 or less than 0, an empty array is returned. The second parameter is the beta.

Time for action – plotting the Kaiser window
Let's plot the Kaiser window:

1. Calculating the Kaiser window: Call the NumPy kaiser function.

window = numpy.kaiser(42, 14)

2. Plotting the Kaiser window: Plot the window with Matplotlib.

plot(window)
show()

The Kaiser window would appear as follows:

Chapter 7

[149]

What just happened?
We plotted the Hamming window with the NumPy kaiser function.

Special mathematical functions
We will end this chapter with some special mathematical functions. First, the modified
Bessel function of the first kind 0th order is represented in NumPy by i0. Second, the sinc
function is represented in NumPy by a function with the same name.

Time for action – plotting the modified Bessel function
Let's see what the modified Bessel function of the first kind 0th order looks like:

1. Calculate the x values: Compute evenly spaced values with the NumPy linspace
function.

x = numpy.linspace(0, 4, 100)

2. Calculate the function values: Call the NumPy i0 function.

vals = numpy.i0(x)

3. Plot the function: Plot the modified Bessel function with Matplotlib:

plot(x, vals)
show()

The modified Bessel function would have the following output:

Peeking Into Special Routines

[150]

What just happened?
We plotted the modified Bessel function of the first kind 0th order with the NumPy i0
function.

Sinc
The sinc function is widely used in mathematics and signal processing. NumPy has a
function with the same name.

Time for action - plotting the sinc function
We will plot the sinc function:

1. Compute the x values: Compute evenly spaced values with the NumPy linspace
function.

x = numpy.linspace(0, 4, 100)

2. Compute the function values: Call the NumPy sinc function.

vals = numpy.sinc(x)

3. Plot the function: Plot the sinc function with Matplotlib.

plot(x, vals)
show()

The sinc function would have the following output:

Chapter 7

[151]

What just happened?
We plotted the well known sinc function with the NumPy sinc function.

Summary
This was a special chapter covering some of the more special NumPy topics. We covered
sorting and searching, special functions, financial utilities, and window functions.

The next chapter will be about the very important subject of testing.

8
Assure Quality with Testing

Some programmers test only in production. If you are not one of them you're
probably familiar with the concept of unit testing. Unit tests are automated
tests written by a programmer to test his or her code. These tests could, for
example, test a function or part of a function in isolation. Only a small unit of
code is tested by each test. The benefits are increased confidence in the quality
of the code, reproducible tests, and as a side effect, more clear code.

Python has good support for unit testing. Additionally, NumPy adds the
numpy.testing package to that for NumPy code unit testing.

This chapter's topics include:

 � Unit testing

 � Asserts

 � Floating point precision

Assert functions
The NumPy testing package has a number of utility functions that test whether a
precondition is true or not:

Function Description
assert_almost_equal Raises an exception if two numbers are not equal up

to a specified precision
assert_approx_equal Raises an exception if two numbers are not equal up

to a certain significance

Assure Quality with Testing

[154]

Function Description
assert_array_almost_equal Raises an exception if two arrays are not equal up to

a specified precision
assert_array_equal Raises an exception if two arrays are not equal

assert_array_less Raises an exception if two arrays do not have the
same shape and the elements of the first array are
strictly less than the elements of the second array

assert_equal Raises an exception if two objects are not equal
assert_raises Fails if a specified exception is not raised by a

callable invoked with defined arguments
assert_warns Fails if a specified warning is not thrown
assert_string_equal Asserts that two strings are equal

Time for action – asserting almost equal
Imagine that you have two numbers that are almost equal. Let's use the assert_almost_
equal function to check whether they are equal:

1. Call the function with low precision (up to 7 decimal places):

print "Decimal 6", numpy.testing.assert_almost_equal(0.123456789,
0.123456780, decimal=7)

Note that no exception is raised, as you can see in the following result:

Decimal 6 None

2. Call the function with high precision (up to 8 decimal places):

print "Decimal 7", numpy.testing.assert_almost_equal(0.123456789,
0.123456780, decimal=8)

The result is:

Decimal 7

Traceback (most recent call last):

 …

 raise AssertionError(msg)

AssertionError:

Arrays are not almost equal

 ACTUAL: 0.123456789

 DESIRED: 0.12345678

Chapter 8

[155]

What just happened?
We used the assert_almost_equal function from the NumPy testing package to check
whether 0.123456789 and 0.123456780 are equal for different decimal precision.

Pop quiz – specifying decimal precision
1. Which parameter of the assert_almost_equal function specifies the decimal

precision?

a. decimal

b. precision

c. tolerance

d. significant

Approximately equal arrays
The assert_approx_equal function raises an exception if two numbers are not equal up
to a certain number of significant digits. The function result is an exception that is triggered
by the condition:

abs(actual - expected) >= 10**-(significant - 1)

Time for action – asserting approximately equal
Let's take the numbers from the previous Time for action tutorial and let the
assert_approx_equal function work on them:

1. Call the function with low significance:

print "Significance 8", numpy.testing.assert_approx_
equal(0.123456789, 0.123456780,
significant=8)

The result is:

Significance 8 None

2. Call the function with high significance:

print "Significance 9",
 numpy.testing.assert_approx_equal
 (0.123456789, 0.123456780, significant=9)

Assure Quality with Testing

[156]

An exception is thrown:

Significance 9

Traceback (most recent call last):

 ...

 raise AssertionError(msg)

AssertionError:

Items are not equal to 9 significant digits:

 ACTUAL: 0.123456789

 DESIRED: 0.12345678

What just happened?
We used the assert_approx_equal function from the NumPy testing package to check
whether 0.123456789 and 0.123456780 are equal for different decimal precision.

Almost equal arrays
The assert_array_almost_equal function raises an exception if two arrays are not
equal up to a specified precision. The function checks whether the two arrays have the same
shape. Then, the values of the arrays are compared element-by-element with:

|expected - actual| < 0.5 10-decimal

Time for action – asserting arrays almost equal
Let's form arrays with the values from the previous Time for action tutorial by adding a 0 to
each array:

1. Calling the function with lower precision:

print "Decimal 8", numpy.testing.assert_array_almost_equal([0,
 0.123456789], [0, 0.123456780], decimal=8)

The result is:

Decimal 8 None

2. Calling the function with higher precision:

print "Decimal 9", numpy.testing.assert_array_almost_equal([0,
 0.123456789], [0, 0.123456780], decimal=9)

An exception is thrown:

Decimal 9

Traceback (most recent call last):

 …

Chapter 8

[157]

 assert_array_compare

 raise AssertionError(msg)

AssertionError:

Arrays are not almost equal

(mismatch 50.0%)

 x: array([0. , 0.12345679])

 y: array([0. , 0.12345678])

What just happened?
We compared two arrays with the NumPy array_almost_equal function.

Have a go hero – comparing array with different shapes
Use the NumPy array_almost_equal function to compare two arrays with different shapes.

Equal arrays
The assert_array_equal function raises an exception if two arrays are not equal. The
shape of the arrays must have to be equal and the elements of each array must be equal.
NaNs are allowed in the arrays. Alternatively, arrays can be compared with the array_
allclose function. This function has the parameters atol (absolute tolerance) and rtol
(relative tolerance). For two arrays a and b, these parameters satisfy the equation:

|a - b| <= (atol + rtol * |b|)

Time for action – comparing arrays
Let's compare two arrays with the functions we just mentioned. We will reuse the arrays
from the previous Time for action tutorial and add a NaN to them:

1. Call the array_allclose function:

print "Pass", numpy.testing.assert_allclose([0, 0.123456789,
 numpy.nan], [0, 0.123456780, numpy.nan], rtol=1e-7, atol=0)

The result is:

Pass None

Assure Quality with Testing

[158]

2. Call the array_equal function:

print "Fail", numpy.testing.assert_array_equal([0, 0.123456789,
 numpy.nan], [0, 0.123456780, numpy.nan])

An exception is thrown:

Fail

Traceback (most recent call last):

 …

assert_array_compare

 raise AssertionError(msg)

AssertionError:

Arrays are not equal

(mismatch 50.0%)

 x: array([0. , 0.12345679, nan])

 y: array([0. , 0.12345678, nan])

What just happened?
We compared two arrays with the array_allclose function and the array_equal
function.

Ordering arrays
The assert_array_less function raises an exception if two arrays do not have the same
shape and the elements of the first array are strictly less than the elements of the second array.

Time for action – checking the array order
Let's check whether one array is strictly greater than another array:

1. Call the assert_array_less function with two strictly ordered arrays

print "Pass", numpy.testing.assert_array_less([0, 0.123456789,
 numpy.nan], [1, 0.23456780, numpy.nan])

The result:

Pass None

2. Failing test: Call the assert_array_less function:

print "Fail", numpy.testing.assert_array_less([0, 0.123456789,
 numpy.nan], [0, 0.123456780, numpy.nan])

Chapter 8

[159]

An exception is thrown:

Fail

Traceback (most recent call last):

 ...

 raise AssertionError(msg)

AssertionError:

Arrays are not less-ordered

(mismatch 100.0%)

 x: array([0. , 0.12345679, nan])

 y: array([0. , 0.12345678, nan])

What just happened?
We checked the ordering of two arrays with the assert_array_less function.

Objects comparison
The assert_equal function raises an exception if two objects are not equal. The objects do
not have to be NumPy arrays, they can also be lists, tuples, or dictionaries.

Time for action – comparing objects
Suppose you need to compare two tuples. We can use the assert_equal function to
do that:

1. Call the assert_equal function:

print "Equal?", numpy.testing.assert_equal((1, 2), (1, 3))

An exception is thrown:

Equal?

Traceback (most recent call last):

 ...

 raise AssertionError(msg)

AssertionError:

Items are not equal:

item=1

 ACTUAL: 2

 DESIRED: 3

Assure Quality with Testing

[160]

What just happened?
We compared two tuples with the assert_equal function—an exception was raised
because the tuples were not equal to each other.

String comparison
The assert_string_equal function asserts that two strings are equal. If the test fails an
exception is thrown and the difference between the strings is shown. The case of the string
characters matters.

Time for action – comparing strings
Let's compare strings. Both strings are the word "NumPy":

1. Call the assert_string_equal function to compare a string with itself. This test,
of course, should pass:

print "Pass", numpy.testing.assert_string_equal("NumPy", "NumPy")

The test passes:

Pass None

2. Call the assert_string_equal function to compare a string with another string
with the same letters but different casing. This test should throw an exception:

print "Fail", numpy.testing.assert_string_equal("NumPy", "Numpy")

An exception is thrown:

Fail

Traceback (most recent call last):

 …

 raise AssertionError(msg)

AssertionError: Differences in strings:

- NumPy? ^

+ Numpy? ^

What just happened?
We compared two strings with the assert_string_equal function. The test threw an
exception when the casing did not match.

Chapter 8

[161]

Floating point comparisons
The assert_array_almost_equal_nulp and assert_array_max_ulp NumPy
functions provide consistent floating point comparisons. ULP stands for Unit of Least
Precision of floating point numbers. According to the IEEE 754 specification, a half ULP
precision is required for elementary arithmetic operations.

Machine epsilon is the largest relative rounding error in floating point arithmetic. Machine
epsilon is equal to ULP relative to 1. The NumPy finfo function allows us to determine the
machine epsilon.

Time for action – comparing with
assert_array_almost_equal_nulp

Let's see the assert_array_almost_equal_nulp function in action:

1. Determine the machine epsilon with the finfo function:

eps = numpy.finfo(float).eps
print "EPS", eps

The epsilon would be:

EPS 2.22044604925e-16

2. Compare two almost equal floats: Compare 1.0 with 1 + epsilon using the
assert_almost_equal_nulp function. Do the same for 1 + 2 * epsilon:

print "1",
 numpy.testing.assert_array_almost_equal_nulp(1.0, 1.0 + eps)
print "2",
 numpy.testing.assert_array_almost_equal_nulp(1.0, 1.0 + 2 * eps)

The result:

1 None

2

Traceback (most recent call last):

 …

 assert_array_almost_equal_nulp

 raise AssertionError(msg)

AssertionError: X and Y are not equal to 1 ULP (max is 2)

Assure Quality with Testing

[162]

What just happened?
We determined the machine epsilon with the finfo function. We then compared 1.0 with
1 + epsilon with the assert_almost_equal_nulp function. This test passed, however
adding a little bit more resulted in an exception.

Comparison of floats with more ULPs
The assert_array_max_ulp function allows you to specify an upper bound for the
number ULPs you would allow. The maxulp parameter accepts an integer value for the limit.
The value of this parameter is 1 by default.

Time for action – comparing using maxulp of 2
Let's do the same comparisons as in the previous Time for action tutorial, but specify a
maxulp of 2 when necessary:

1. Determine the machine epsilon with the finfo function:

eps = numpy.finfo(float).eps
print "EPS", eps

The epsilon would be:

EPS 2.22044604925e-16

2. Do the comparisons as done in the previous Time for action tutorial, but use the
assert_array_max_ulp function with the appropriate maxulp value:

print "1", numpy.testing.assert_array_max_ulp(1.0, 1.0 + eps)
print "2", numpy.testing.assert_array_max_ulp(1.0, 1 + 2 * eps,
 maxulp=2)

The output:

1 1.0

2 2.0

What just happened?
We compared the same values as the previous Time for action tutorial, but specified a
maxulp of 2 in the second comparison. Using the assert_array_max_ulp function with
the appropriate maxulp value, these tests passed with a return value of the number of ULPs.

Chapter 8

[163]

Summary
We learned about testing and NumPy testing utilities in this chapter. We covered unit testing,
assert functions and floating point precision.

The topic of the next chapter is Matplotlib—the Python scientific visualization and
graphing library.

9
Plotting with Matplotlib

Matplotlib is a very useful python plotting library. It integrates nicely with
NumPy but is a separate open source project. You can find a gallery of beautiful
examples at http://matplotlib.sourceforge.net/gallery.html.

Matplotlib also has utility functions to download and manipulate data from
Yahoo Finance. We will see several examples of stock charts.

This chapter features extended coverage of:

 � Simple plots

 � Subplots

 � Histograms

 � Plot Customization

 � Logplots

Simple plots
The matplotlib.pyplot package contains functionality for simple plots. It is important
to remember that each subsequent function call changes the state of the current plot.
Eventually we will want to either save the plot in a file or display it with the show function.

Plotting with Matplotlib

[166]

Time for action – plotting a polynomial function
To illustrate how plotting works, let's display some polynomial graphs. We will use the
NumPy polynomial function poly1d to create a polynomial.

1. Create the polynomial: Take the standard input values as polynomial coefficients.
Use the NumPy poly1d function to create a polynomial.

func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))

2. Create the x values: Create the x values with the NumPy linspace function. Use
the range -10 to 10 and create 30 even spaced values.

x = numpy.linspace(-10, 10, 30)

3. Calculate the polynomial values: Calculate the polynomial values using the
polynomial that we created in the first step.

y = func(x)

4. Call the plot function: Call the plot function, this does not immediately display
the graph.

pyplot.plot(x, y)

5. Add a label to the x axis: Add a label to the x axis with xlabel function.

pyplot.xlabel('x')

6. Add a label to the y axis: Add a label to the y axis with ylabel function.

pyplot.ylabel('y(x)')

7. Display the plot on the screen: Call the show function to display the graph.

pyplot.show()

Here is a plot with polynomial coefficients 1, 2, 3, and 4:

Chapter 9

[167]

What just happened?
We displayed a graph of a polynomial on our screen. We added labels to the x and y axis.

Pop quiz – doing the thing
1. What does the plot function do?

a. It displays two-dimensional plots on screen

b. It saves an image of a two-dimensional plot in a file

c. It does both a and b...

d. It does neither a, b, or c

Plot format string
The plot function accepts an unlimited number of arguments. In the previous section
we gave it two arrays as arguments. We could also specify the line color and style with an
optional format string. By default it is a solid blue line denoted as b-, but you can specify a
different color and style such as red dashes.

Time for action – plotting a polynomial and its derivative
Let's plot a polynomial and its first order derivative using the derive function with m as 1.
We already did the first part in the previous Time for action tutorial. We want to have two
different line styles to be able to discern what is what.

1. Differentiate: Create and differentiate the polynomial.

func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
func1 = func.deriv(m=1)
x = numpy.linspace(-10, 10, 30)
y = func(x)
y1 = func1(x)

2. Plot the polynomial and its derivative: Plot the polynomial and its derivative in two
different styles: red circles and green dashes. You cannot see the colors in a print
copy of this book so you will have to try it out for yourself.

pyplot.plot(x, y, 'ro', x, y1, 'g--')
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.show()

Plotting with Matplotlib

[168]

The graph again with polynomial coefficients 1, 2, 3, and 4:

What just happened?
We plotted a polynomial and its derivative using two different line styles and one call of the
plot function.

Subplots
At a certain point you will have too many lines in one plot. Still you would like to have
everything grouped together. We can achieve this with the subplot function.

Time for action – plotting a polynomial and its derivatives
Let's plot a polynomial and its first and second derivative. We will make three subplots for
the sake of clarity:

1. Create the polynomial and its derivatives: Create a polynomial and its derivatives
using the following code.

func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
x = numpy.linspace(-10, 10, 30)
y = func(x)
func1 = func.deriv(m=1)

Chapter 9

[169]

y1 = func1(x)
func2 = func.deriv(m=2)
y2 = func2(x)

2. Create the first subplot: Create the first subplot of the polynomial with the
subplot function. The first parameter of this function is the number of rows, the
second parameter is the number of columns, and the third parameter is an index
number starting with 1. Alternatively, you can combine the three parameters into a
single number such as 311. The subplots will be organized in 3 rows and 1 column.
Give the subplot the title "Polynomial". Make a solid red line.

pyplot.subplot(311)
pyplot.plot(x, y, 'r-')
pyplot.title("Polynomial")

3. Create the second subplot: Create the third subplot of the first derivative with the
subplot function. Give the subplot the title "First Derivative". Use a line of blue
triangles.

pyplot.subplot(312)
pyplot.plot(x, y1, 'b^')
pyplot.title("First Derivative")

4. Create the third subplot: Create the second subplot of the second derivative with
the subplot function. Give the subplot the title "Second Derivative". Use a line of
green circles.

pyplot.subplot(313)
pyplot.plot(x, y2, 'go')
pyplot.title("Second Derivative")
pyplot.xlabel('x')
pyplot.ylabel('y')
pyplot.show()

Plotting with Matplotlib

[170]

The three subplots with polynomial coefficients 1, 2, 3, and 4:

What just happened?
We plotted a polynomial and its first and second derivative using three different line styles
and three subplots in 3 rows and 1 column.

Finance
Matplotlib can help us monitor our stock investments. The matplotlib.finance package
has utilities with which we can download stock quotes from Yahoo Finance (http://
finance.yahoo.com/). The data can then be plotted as candlesticks.

Chapter 9

[171]

Time for action – plotting a year's worth of stock quotes
We can plot a year's worth of stock quotes data with the matplotlib.finance package.
This will require a connection to Yahoo Finance, which will be the data source.

1. Determine start date: Determine the start date by subtracting 1 year from today.

today = date.today()
start = (today.year - 1, today.month, today.day)

2. Create locators: We need to create so-called locators. These objects from the
matplotlib.dates package are needed to locate months and days on the x-axis.

alldays = DayLocator()
months = MonthLocator()

3. Create a formatter: Create a date formatter to format the dates on the x-axis. This
formatter will create a string containing the short name of a month and the year.

month_formatter = DateFormatter("%b %Y")

4. Download the quotes: Download the stock quote data from Yahoo finance with the
code below:

quotes = quotes_historical_yahoo(sys.argv[1], start, today)

5. Create a figure: Create a Matplotlib figure object—this is a top level container for
plot components.

fig = pyplot.figure()

6. Add a subplot: Add a subplot to the figure.

ax = fig.add_subplot(111)

7. Set the major locator: Set the major locator on the x axis to the months locator. This
locator is responsible for the big ticks on the x-axis.

ax.xaxis.set_major_locator(months)

8. Set the minor locator: Set the minor locator on the x axis to the days locator. This
locator is responsible for the small ticks on the x-axis.

ax.xaxis.set_minor_locator(alldays)

9. Set the major formatter: Set the major formatter on the x axis to the months
formatter. This formatter is responsible for the labels of the big ticks on the x axis.

ax.xaxis.set_major_formatter(month_formatter)

Plotting with Matplotlib

[172]

10. Create the candlesticks: A function in the matplotlib.finance package allows us
to display candlesticks. Create the candlesticks using the quotes data. It is possible
to specify the width of the candlesticks. For now use the default value.

candlestick(ax, quotes)

11. Format the x axis labels as dates: Format the labels on the x-axis as dates. This
should rotate the labels on the x axis, so that they fit better.

fig.autofmt_xdate()
pyplot.show()

The candlestick chart for DISH (Dish Network Corp.) would appear as follows:

What just happened?
We downloaded a year's worth of data from Yahoo Finance. We charted this data using
candlesticks.

Histograms
Histograms visualize the distribution of numerical data. Matplotlib has the handy hist
function that graphs histograms. The hist function has two arguments—the array
containing the data and the number of bars.

Chapter 9

[173]

Time for action – charting stock price distributions
Let's chart the stock price distribution of quotes from Yahoo Finance.

1. Download the data: Download the data going back 1 year.

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)

2. Extract the close price: The quotes data in the previous step is stored in a Python
list. Convert this to a NumPy array and extract the close prices.

quotes = numpy.array(quotes)
close = quotes.T[4]

3. Draw the histogram: Draw the histogram with a reasonable number of bars.

pyplot.hist(close, numpy.sqrt(len(close)))
pyplot.show()

The histogram for DISH would appear as follows:

What just happened?
We charted the stock price distribution of DISH as histogram.

Plotting with Matplotlib

[174]

Have a go hero – drawing a bell curve
Overlay a bell curve using the average price and standard deviation. This is, of course, only
an exercise.

Logarithmic plots
Logarithmic plots are useful when the data has a wide range of values. Matplotlib has the
functions semilogx (logarithmic x axis), semilogy (logarithmic y axis), and loglog (x and
y axis logarithmic).

Time for action – plotting stock volume
Stock volume varies a lot, so let's plot it on a logarithmic scale. First we need to download
historical data from Yahoo Finance, extract the dates and volume, create locators and a date
formatter, create the figure, and add it a subplot. We already went through these steps in the
previous Time for action tutorial, so we will skip them here.

1. Logarithmic plot: Plot the volume using a logarithmic scale.

pyplot.semilogy(dates, volume)

Now set the locators and format the x-axis as dates. Instructions for these steps can
be found in the previous Time for action tutorial as well. The stock volume using a
logarithmic scale for DISH would appear as follows:

Chapter 9

[175]

What just happened?
We plotted stock volume using a logarithmic scale.

Scatter plots
A scatter plot displays values for two numerical variables in the same data set. The
Matplotlib scatter function creates a scatter plot. Optionally: we can specify color and size
of the data points in the plot as well as alpha transparency.

Time for action – plotting price and volume returns
with scatter plot

We can easily make a scatter plot of the stock price and volume returns. Again let's
download the necessary data from Yahoo Finance.

1. Extract the close price and volume: The quotes data in the previous step is
stored in a Python list. Convert this to a NumPy array and extract the close and
volume values.

dates = quotes.T[4]
volume = quotes.T[5]

2. Calculate the returns: Calculate the close price and volume returns.

ret = numpy.diff(close)/close[:-1]
volchange = numpy.diff(volume)/volume[:-1]

3. Create a figure: Create a Matplotlib figure object.

fig = pyplot.figure()

4. Add a subplot: Add a subplot to the figure.

ax = fig.add_subplot(111)

5. Create the scatter plot: Create the scatter plot with the color of the data points
linked to the close return, and the size linked to the volume change.

ax.scatter(ret, volchange, c=ret * 100,
 s=volchange * 100, alpha=0.5)

6. Title and grid: Set the title of the plot and put a grid on it.

ax.set_title('Close and volume returns')
ax.grid(True)

pyplot.show()

Plotting with Matplotlib

[176]

The scatter plot for DISH will appear as follows:

What just happened?
We made a scatter plot of the close price and volume returns for DISH.

Fill between
The fill_between function fills a region of a plot with a specified color. We can also
choose an alpha channel value. The function also has a where parameter so that we can
shade a region based on a condition.

Time for action – shading plot regions based on a condition
Imagine that you want to shade the region of a stock chart, where the closing price is below
average with different color than when it is above the mean. The fill_between function is
the best choice for the job. We will again omit the steps of downloading historical data going
back 1 year, extracting dates and close prices, creating locators and date formatter.

1. Create a figure: Create a Matplotlib figure object.

fig = pyplot.figure()

Chapter 9

[177]

2. Add a subplot: Add a subplot to the figure.

ax = fig.add_subplot(111)

3. Plot the closing price: Plot the closing price.

ax.plot(dates, close)

4. Call fill_between: Shade the regions of the plot below the closing price using
different colors depending whether the values are below or above the average price.

pyplot.fill_between(dates, close.min(), close,
 where=close>close.mean(), facecolor="green", alpha=0.4)
pyplot.fill_between(dates, close.min(), close,
 where=close<close.mean(), facecolor="red", alpha=0.4)

Now we can finish the plot by setting locators and formatting the x-axis values as dates. The
stock price using conditional shading for DISH:

What just happened?
We shaded the region of a stock chart, where the closing price is below average with
different color than when it is above the mean.

Plotting with Matplotlib

[178]

Legend and annotations
Legends and annotations are essential for good plots. We can create transparent legends
with the legend function and let Matplotlib figure out where to place them. Also with the
annotate function we can put annotations very accurately on a plot. There are a large
number of annotation and arrow styles.

Time for action – using legend and annotations
In Chapter 3, Get Into Terms with Commonly Used Functions we learned how to calculate the
exponential moving average of stock prices. We will plot the close price of a stock and three
of its exponential moving averages. To clarify the plot, we will add a legend. Also, we will
indicate crossovers of two of the averages with annotations. Some steps are again omitted to
avoid repetition.

1. Calculate and plot the exponential moving averages: Go back to Chapter 3, Get into
Terms with Commonly Used Functions if needed and review the exponential moving
average algorithm. Calculate and plot the exponential moving averages of 9, 12 and
15 periods.

emas = []
for i in range(9, 18, 3):
 weights = numpy.exp(numpy.linspace(-1., 0., i))
 weights /= weights.sum()

 ema = numpy.convolve(weights, close)[i-1:-i+1]
 idx = (i - 6)/3
 ax.plot(dates[i-1:], ema, lw=idx, label="EMA(%s)" % (i))
 data = numpy.column_stack((dates[i-1:], ema))
 emas.append(numpy.rec.fromrecords(
 data, names=["dates", "ema"]))

Notice that the plot function call needs a label for the legend. We stored the
moving averages in record arrays for the next step.

2. Find the crossover points: Let's find the crossover points of the first two moving
averages.

first = emas[0]["ema"].flatten()
second = emas[1]["ema"].flatten()
bools = numpy.abs(first[-len(second):] - second)/second < 0.0001
xpoints = numpy.compress(bools, emas[1])

Chapter 9

[179]

3. Annotate the crossover points: Now that we have the crossover points annotate
them with arrows. Make sure that the annotation text is slightly away from the
crossover points.

for xpoint in xpoints:
 ax.annotate('x', xy=xpoint, textcoords='offset points',
 xytext=(-50, 30),
 arrowprops=dict(arrowstyle="->"))

4. Add a legend: Add a legend and let Matplotlib decide where to put it.

leg = ax.legend(loc='best', fancybox=True)

5. Make the legend transparent: Make the legend transparent by setting the alpha
channel value.

leg.get_frame().set_alpha(0.5)

The stock price and moving averages with legend and annotations would appear as follows:

What just happened?
We plotted the close price of a stock and three of its exponential moving averages. We
added a legend to the plot. We annotated the crossover points of the first two averages
with annotations.

Plotting with Matplotlib

[180]

Summary
This chapter was about Matplotlib—a Python plotting library. We covered simple plots,
histograms, plot customization, subplots and logplots. We also saw a few examples of
displaying stock charts.

The next chapter is about SciPy—a scientific Python framework that is built on top
of NumPy.

10
When NumPy is Not Enough: SciPy

and Beyond

SciPy is built on top of NumPy. It adds functionality such as numerical
integration, optimization, statistics, and special functions.

In this chapter we will cover the following topics:

 � File I/O

 � Statistics

 � Signal processing

 � Optimization

 � Interpolation

 � Image processing

Matlab and Octave
Matlab and its open source alternative Octave are popular mathematical programs. The
scipy.io package has functions that let you load Matlab or Octave code in Python
programs and vice versa. The loadmat function loads a .mat file. The savemat function
saves a dictionary of names and arrays into a .mat file.

When NumPy is Not Enough: SciPy and Beyond

[182]

Time for action – saving and loading a .mat file
If we start with NumPy code and decide to use the said code within a Matlab or Octave
environment, the easiest thing to do is create a .mat file. We then can load the file within
Matlab or Octave. Let's go through the necessary steps.

1. Call savemat: Create a NumPy array and call savemat to create a .mat file. This
function has two parameters: a file name, and a dictionary containing variable
names and values.

a = numpy.arange(7)

scipy.io.savemat("a.mat", {"array": a})

2. Load the .mat file: Within a Matlab or Octave environment, load the .mat file and
check the stored array.

octave-3.4.0:7> load a.mat
octave-3.4.0:8> a

octave-3.4.0:8> array
array =

 0
 1
 2
 3
 4
 5
 6

What just happened?
We created a .mat file from NumPy code and loaded it within Octave. We checked the
NumPy array that was created.

Pop quiz – loading .mat files
1. Which function loads .mat files?

a. Loadmatlab

b. loadmat

c. loadoct

d. frommat

Chapter 10

[183]

Statistics
The SciPy statistics module is called scipy.stats. There is one class that implements
continuous distributions and one class that implements discrete distributions. Also in this
module, functions can be found that can perform a great number of statistical tests.

Time for action – analyzing random values
We will generate random values that mimic a normal distribution and analyze the generated
data with statistical functions from the scipy.stats package.

1. Generate random values: Generate random values from a normal distribution using
the scipy.stats package.

generated = scipy.stats.norm.rvs(size=900)

2. Fit the values: Fit the generated values to a normal distribution. This basically gives
us the mean and standard deviation of the data set.

print "Mean", "Std", scipy.stats.norm.fit(generated)

The mean and standard deviation would be:

Mean Std (0.0071293257063200707, 0.95537708218972528)

3. Skewness test: Perform a skewness test. This test returns two values. The second
value is the p value—the probability that the skewness of the data set corresponds
to a normal distribution. P values range from 0 to 1.

print "Skewtest", "pvalue", scipy.stats.skewtest(generated)

The result of the skewness test would be:

Skewtest pvalue (-0.62120640688766893, 0.5344638245033837)

So there is a 53 percent chance that we are dealing with a normal distribution.

4. Kurtosis test: Perform a kurtosis test. This test is setup similarly to the skewness
test, but of course, applies to kurtosis.

print "Kurtosistest", "pvalue",
 scipy.stats.kurtosistest(generated)

The result of the kurtosis test would be:

Kurtosistest pvalue (1.3065381019536981, 0.19136963054975586)

When NumPy is Not Enough: SciPy and Beyond

[184]

5. Normality test: Perform a normality test. This test also returns two values, of which
the second is a p value.

print "Normaltest", "pvalue", scipy.stats.normaltest(generated)

The result of the normality test would be:

Normaltest pvalue (2.09293921181506, 0.35117535059841687)

6. Score at percentile: We can find the value at a certain percentile easily with SciPy.

print "95 percentile",
 scipy.stats.scoreatpercentile(generated, 95)

The value at the 95th percentile would be:

95 percentile 1.54048860252

7. Percentile of score: Do the opposite of the previous step to find the percentile at 1.

print "Percentile at 1",
 scipy.stats.percentileofscore(generated, 1)

The percentile at 1 would be:

Percentile at 1 85.5555555556

8. Plot with Matplotlib: Plot the generated values in a histogram with Matplotlib.
More information about Matplotlib can be found in the previous chapter.

matplotlib.pyplot.hist(generated)
matplotlib.pyplot.show()

The histogram of the generated random values is as follows:

Chapter 10

[185]

What just happened?
We created a data set from a normal distribution and analyzed it with the scipy.stats
module.

Have a go hero – improving the data generation
Judging from the histogram in the previous Time for action tutorial, there is still room
for improvement when it comes to generating the data. Try using NumPy or different
parameters of the scipy.stats.norm.rvs function.

Samples comparison and SciKits
Often we will have two data samples, maybe from different experiments, that are somehow
related. Statistical tests exist that can compare the samples. Some of these have been
implemented in the scipy.stats module.

Another statistical test that I like is the Jarque Bera normality test from scikits.
statsmodels.stattools. SciKits are small experimental Python software toolkits.
They are not part of SciPy.

Time for action – comparing stock log returns
We will download the stock quotes for the last year of two trackers using Matplotlib. As
mentioned in the previous chapter we can retrieve quotes from Yahoo Finance. We will
compare the log returns of the close price of DIA and SPY. Also we will perform the Jarque
Bera test on the difference of the log returns.

1. Download quotes: Write a function that can return the close price for a
specified stock.

def get_close(symbol):
 today = date.today()
 start = (today.year - 1, today.month, today.day)

 quotes = quotes_historical_yahoo(symbol, start, today)
 quotes = numpy.array(quotes)

 return quotes.T[4]

2. Calculate log returns: Calculate the log returns for DIA and SPY. The log returns are
calculated by taking the natural logarithm of the close price and then taking the
difference of consecutive values.

spy = numpy.diff(numpy.log(get_close("SPY")))
dia = numpy.diff(numpy.log(get_close("DIA")))

When NumPy is Not Enough: SciPy and Beyond

[186]

3. Compare means: The means comparison test checks whether two different samples
could have the same mean value. Two values are returned, of which the second is
the p value from 0 to 1.

print "Means comparison", scipy.stats.ttest_ind(spy, dia)

The result of the means comparison test would be:

Means comparison (-0.017995865641886155, 0.98564930169871368)

So there is about a 98 percent chance that the two samples have the same mean log
return.

4. Kolmogorov Smirnov test: The Kolmogorov Smirnov two samples test tells us how
likely it is that two samples are drawn from the same distribution.

print "Kolmogorov smirnov test", scipy.stats.ks_2samp(spy, dia)

Again two values are returned of which the second value is the p value.

Kolmogorov smirnov test (0.063492063492063516,
0.67615647616238039)

5. Jarque Bera test: Unleash the Jarque Bera normality test on the difference of the log
returns.

print "Jarque Bera test",
 scikits.statsmodels.stattools.jarque_bera(spy – dia)[1]

The p value of the Jarque Bera normality test would be:

Jarque Bera test 0.596125711042

6. Plot histograms with Matplotlib: Plot the histograms of the log returns and the
difference thereof with Matplotlib.

matplotlib.pyplot.hist(spy, histtype="step", lw=1, label="SPY")
matplotlib.pyplot.hist(dia, histtype="step", lw=2, label="DIA")
matplotlib.pyplot.hist(spy - dia, histtype="step", lw=3,
 label="Delta")
matplotlib.pyplot.legend()
matplotlib.pyplot.show()

Chapter 10

[187]

The histograms of the log returns and difference is as follows:

What just happened?
We compared samples of log returns for DIA and SPY. Also we performed the Jarque Bera
test on the difference of the log returns.

Signal processing
The scipy.signal module contains filter functions and B-spline interpolation algorithms.
A SciPy signal is defined as an array of numbers. An example of a filter is the detrend
function. This function takes a signal and does a linear fit on it. This trend is then subtracted
from the original input data.

Time for action – detecting a trend in QQQ
Often we are more interested in the trend of a data sample than in detrending it. Still we can
get the trend back easily after detrending. Let's do that for 1 year of price data for QQQ:

1. Download quotes: Write code that gets the close price and corresponding dates
for QQQ.

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo("QQQ", start, today)

When NumPy is Not Enough: SciPy and Beyond

[188]

quotes = numpy.array(quotes)

dates = quotes.T[0]
qqq = quotes.T[4]

2. Detrend the signal: Detrend the signal.

y = scipy.signal.detrend(qqq)

3. Create locators: Create month and day locators for the dates.

alldays = DayLocator()
months = MonthLocator()

4. Date formatter: Create a date formatter that creates a string of month name
and year.

month_formatter = DateFormatter("%b %Y")

5. Figure and subplot: Create a figure and subplot.

fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(111)

6. Data and underlying trend: Plot the data and underlying trend by subtracting the
detrended signal.

matplotlib.pyplot.plot(dates, qqq, 'o', dates, qqq - y, '-')

7. Locators and formatter: Set the locators and formatter.

ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(month_formatter)

8. X axis labels: Format the x axis labels as dates.

fig.autofmt_xdate()
matplotlib.pyplot.show()

Chapter 10

[189]

The following figure shows the QQQ prices with a trend line:

What just happened?
We plotted the closing price for QQQ with a trend line.

Fourier analysis
Signals in the real world often have a periodic nature. A commonly used tool to deal with
these signals is the Fourier transform. Functions for Fourier transforms can be found in the
scipy.fftpack module. Included in the package are fast Fourier transforms, differential
and pseudo-differential operators, as well as several helper functions. Matlab users will be
pleased to know that a number of functions in the scipy.fftpack module have the same
name as their Matlab counterparts and similar function as their Matlab equivalents.

Time for action – filtering a detrended signal
We learned in the previous Time for action tutorial how to detrend a signal. This detrended
signal could have a cyclical component. Let's try to visualize this. Some of the steps are a
repetition of steps in the previous Time for action tutorial, such as downloading the data and
setting up Matplotlib objects. These steps are omitted here.

1. Frequency spectrum: Apply Fourier transforms, giving us the frequency spectrum.

amps = numpy.abs(scipy.fftpack.fftshift(scipy.fftpack.rfft(y)))

When NumPy is Not Enough: SciPy and Beyond

[190]

2. Noise filter: Filter out the noise. Let's say if the magnitude of a frequency
component is below 10 percent of the strongest component, throw it out:

amps[amps < 0.1 * amps.max()] = 0

3. Inverse transform: Transform the filtered signal back to the original domain and plot
it together with the detrended signal.

matplotlib.pyplot.plot(dates, y, 'o', label="detrended")
matplotlib.pyplot.plot(dates,
 -scipy.fftpack.irfft(scipy.fftpack.ifftshift(amps)),
 label="filtered")

4. X axis labels: Format the x axis labels as dates and add a legend:

fig.autofmt_xdate()
matplotlib.pyplot.legend()

5. Second subplot: Add a second subplot and plot the frequency spectrum after
filtering.

ax2 = fig.add_subplot(212)
N = len(qqq)
matplotlib.pyplot.plot(numpy.linspace(-N/2, N/2, N), amps,
 label="transformed")

6. Legend: Display the legend and plot.

matplotlib.pyplot.legend()
matplotlib.pyplot.show()

The following plots are of the signal and frequency spectrum:

Chapter 10

[191]

What just happened?
We detrended a signal and applied a simple filter on it using the scipy.fftpack module.

Optimization
Several optimization algorithms are provided by the scipy.optimize module. One of
the algorithms is a least squares fitting function leastsq. When calling this function, we
are required to provide a residuals function. This function is used to minimize the sum of
the squares of the residuals. Also, it is necessary to give the algorithm a starting point. This
should be a best guess—as close as possible to the real solution. Otherwise execution will
stop after about 800 iterations.

Time for action – fitting to a sine
In the previous Time for action tutorial we created a simple filter for detrended data. Now
let's use a more restrictive filter that will leave us only with the main frequency component.
We will fit a sinusoidal pattern to it and plot our results. This model has four parameters—
amplitude, frequency, phase, and vertical offset.

1. Download quotes: Write code that gets the close price and corresponding dates
for QQQ.

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo("QQQ", start, today)
quotes = numpy.array(quotes)

dates = quotes.T[0]
qqq = quotes.T[4]

2. Detrended signal: Detrend the signal.

y = scipy.signal.detrend(qqq)

3. Locators: Create month and day locators for the dates.

alldays = DayLocator()
months = MonthLocator()

4. Date formatter: Create a date formatter that creates a string of month name
and year.

month_formatter = DateFormatter("%b %Y")

When NumPy is Not Enough: SciPy and Beyond

[192]

5. Figure and subplot: Create a figure and subplot.

fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(211)

6. Locators and formatter: Set the locators and formatter.

ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(month_formatter)

7. Frequency spectrum: Apply Fourier transforms giving us the frequency spectrum.

amps = numpy.abs(scipy.fftpack.fftshiftn(scipy.fftpack.rfft(y)))

8. Main component: Retrieve the main component of the frequency spectrum.

amps[amps < amps.max()] = 0

9. Residual functions: Define a residuals function based on a sine wave model.

def residuals(p, y, x):
 A,k,theta,b = p
 err = y-A * numpy.sin(2* numpy.pi* k * x + theta) + b

 return err

10. Inverse transform: Transform the filtered signal back to the original domain.

filtered = -scipy.fftpack.irfft(scipy.fftpack.ifftshift(amps))

11. Initial guess: Guess the values of the parameters we are trying to estimate.

N = len(qqq)
f = numpy.linspace(-N/2, N/2, N)
p0 = [filtered.max(), f[amps.argmax()]/(2*N), 0, 0]
print "P0", p0

The initial values would be:

P0 [2.6679532410065212, 0.00099598469163686377, 0, 0]

12. Least squares fit: Call the leastsq function.

plsq = scipy.optimize.leastsq(residuals, p0, args=(filtered,
 dates))
p = plsq[0]
print "P", p

The final parameter values are:

P [2.67678014e+00 2.73033206e-03 -8.00007036e+03
-5.01260321e-03]

Chapter 10

[193]

13. First subplot: Finish the first subplot with detrended data, filtered data, and fit of
the filtered data. Use a date format for the horizontal axis and add a legend.

matplotlib.pyplot.plot(dates, y, 'o', label="detrended")
matplotlib.pyplot.plot(dates, filtered, label="filtered")
matplotlib.pyplot.plot(dates, p[0] * numpy.sin(2 * numpy.pi *
 dates * p[1] + p[2]) + p[3], '^', label="fit")
fig.autofmt_xdate()
matplotlib.pyplot.legend()

14. Second subplot: Add a second subplot with a legend of the main component of the
frequency spectrum.

ax2 = fig.add_subplot(212)
matplotlib.pyplot.plot(f, amps, label="transformed")

matplotlib.pyplot.legend()
matplotlib.pyplot.show()

The following are the resulting charts:

What just happened?
We detrended 1 year of price data for QQQ. This signal was then filtered until only the main
component of the frequency spectrum was left over. We fitted a sine to the filtered signal
using the scipy.optimize module.

When NumPy is Not Enough: SciPy and Beyond

[194]

Numerical integration
SciPy has a numerical integration package scipy.integrate, that has no equivalent
in NumPy. The quad function can integrate a one variable function between two points.
These points can be at infinity.

Time for action – calculating the Gaussian integral
The Gaussian integral is related to the error function, but has no finite limits. It evaluates to
the square root of pi. Let's calculate the integral with the quad function.

1. Quad function: Calculate the Gaussian integral with the quad function.

print "Gaussian integral", numpy.sqrt(numpy.pi),
scipy.integrate.quad(lambda x: numpy.exp(-x**2),
-numpy.inf, numpy.inf)

The return value is the outcome and its error would be:

Gaussian integral 1.77245385091 (1.7724538509055159,
1.4202636780944923e-08)

What just happened?
We calculated the Gaussian integral with the quad function.

Interpolation
The scipy.interpolate function interpolates a function based on experimental data.
The interp1d class can create a linear or cubic interpolation function. By default a linear
interpolation function is constructed, but if the kind parameter is set, a cubic interpolation
function is created instead. The interp2d class works the same way, but in 2D.

Time for action – interpolating in one dimension
We will create data points using a sinc function and add some random noise to it. After
that, we will do a linear and cubic interpolation, and plot the results.

1. Data points: Create the data points and add noise to it.

x = numpy.linspace(-18, 18, 36)
noise = 0.1 * numpy.random.random(len(x))
signal = numpy.sinc(x) + noise

Chapter 10

[195]

2. Linear interpolation: Create a linear interpolation function and apply it to an input
array with five times as many data points.

interpreted = scipy.interpolate.interp1d(x, signal)
x2 = numpy.linspace(-18, 18, 180)
y = interpreted(x2)

3. Cubic interpolation: Do the same as in the previous step, but with cubic
interpolation.

cubic = scipy.interpolate.interp1d(x, signal, kind="cubic")
y2 = cubic(x2)

4. Plot: Plot the results with Matplotlib.

matplotlib.pyplot.plot(x, signal, 'o', label="data")
matplotlib.pyplot.plot(x2, y, '-', label="linear")
matplotlib.pyplot.plot(x2, y2, '-', lw=2, label="cubic")

matplotlib.pyplot.legend()
matplotlib.pyplot.show()

The following diagram is a plot of the data, linear, and cubic interpolation:

What just happened?
We created a data set from the sinc function and added noise to it. We then did linear and
cubic interpolation using the interp1d class of the scipy.interpolate module.

When NumPy is Not Enough: SciPy and Beyond

[196]

Image processing
With SciPy, we can do image processing using the scipy.ndimage package. The module
contains various image filters and utilities.

Time for action – manipulating Lena
In the scipy.misc module, there is a utility which loads the image of "Lena". We will apply
some filters on this image and rotate it.

1. Lena: Load the "Lena" image and display it in a subplot.

image = scipy.misc.lena().astype(numpy.float32)

matplotlib.pyplot.subplot(221)
matplotlib.pyplot.title("Original Image")
img = matplotlib.pyplot.imshow(image)

Note that we are dealing with a float32 array.

2. Median filter: Apply a median filter to the image and display it in a second subplot.

matplotlib.pyplot.subplot(222)
matplotlib.pyplot.title("Median Filter")
filtered = scipy.ndimage.median_filter(image, size=(42,42))
matplotlib.pyplot.imshow(filtered)

3. Rotation: Rotate the image and display it in the third subplot.

matplotlib.pyplot.subplot(223)
matplotlib.pyplot.title("Rotated")
rotated = scipy.ndimage.rotate(image, 90)
matplotlib.pyplot.imshow(rotated)

4. Prewitt filter: Apply a Prewitt filter to the image and display it in the fourth subplot.

matplotlib.pyplot.subplot(224)
matplotlib.pyplot.title("Prewitt Filter")
filtered = scipy.ndimage.prewitt(image)
matplotlib.pyplot.imshow(filtered)
matplotlib.pyplot.show()

Chapter 10

[197]

The following are the resulting images:

What just happened?
We manipulated the image of "Lena" in several ways using the scipy.ndimage module.

Summary
In this chapter we only scratched the surface of what is possible with SciPy and SciKits. Still,
we learned a bit about file I/O, statistics, signal processing, optimization, interpolation, and
image processing.

Pop Quiz Answers

Chapter 1, NumPy Quick Start

What does arrange(5) do? It creates a NumPy array with values 0 to 4.

The created NumPy array has values 0, 1, 2, 3, 4.

Chapter 2, Beginning with NumPy Fundamentals

How is the shape of an ndarray
stored?

It is stored in a tuple.

Chapter 3, Get into Terms with Commonly Used Functions

Which function returns the weighted
average of an array?

average

Chapter 4, Convenience Functions for Your Convenience

Which function returns the
covariance of two arrays?

cov

Pop Quiz Answers

[200]

Chapter 5, Working with Matrices and ufuncs

What is the row delimiter in a string
accepted by the mat and bmat
functions?

Semicolon

Chapter 6, Move Further with NumPy Modules

Which function can create matrices? mat

Chapter 7, Peeking into Special Routines

Which NumPy module deals with
random numbers?

random

Chapter 8, Assured Quality with Testing

Which parameter of the assert_
almost_equal function specifies
the decimal precision?

decimal

Chapter 9, Plotting with Matplotlib

What does the plot function do? It does neither a, b, or c.

Chapter 10, When NumPy is not enough SciPy and Beyond

Which function loads .mat files? loadmat

Index
Symbols
2-by-2 identity matrix

creating 101
2-by-2 matrix

about 50
creating 28

3-by-3 matrix
creating 28

%hist command 23
.mat file, Matlab

loading 182
saving 182

/ operator 106, 107
// operator 107
% operator 107, 108
#scipy 24

A
abs function 30, 113, 155
accumulate method 104
add function

about 104
ufuncs methods, applying on 104, 105

annotate function 178
annotations

about 178, 179
crossover points, annotating 179
crossover points, finding 178

annualized volatility 58
apply_along_axis function 63, 64, 80

arange function 17, 23, 26, 27, 34, 52, 87, 114,
139

Arch Linux 13
argmax function 61, 86, 138
argmin function 61, 86, 138
argsort function 135
argwhere function 138
arithmetic functions

about 105
divide 106
floor_divide 106
/ operator 106
// operator 107
true_divide 106

array_allclose function 157, 158
array_almost_equal function 157
array attributes, NumPy

about 43
flat 45
imag 45
itemsize 44
.j 45
nbytes 44
ndim 43
real 45
size 44
T 44

array_equal function 158
array function 27, 28
array objects 26
arrays

almost equal arrays, asserting 156, 157
approximately equal arrays, asserting 155, 156

[202]

clipping 78, 79
comparing 157, 158
compressing 78, 79
converting, to list 46, 47
creating 34
dividing 106, 107
elements, extracting from 139
equal arrays, asserting 157, 158
matrices, creating from 100
ordering 158, 159
reshaping 34
splitting 41

array shapes
manipulating 36, 37

assert_almost_equal function 153-155
assert_approx_equal function 153-156
assert_array_almost_equal function 154-156
assert_array_almost_equal_nulp function

about 161
floating point, comparing 161, 162

assert_array_equal function 154, 157
assert_array_less function 154, 158, 159
assert_array_max_ulp function 161, 162
assert_equal function 154, 159, 160
assert functions

assert_almost_equal 153
assert_approx_equal 153
assert_array_almost_equal 154
assert_array_equal 154
assert_array_less 154
assert_equal 154
assert_raises 154
assert_string_equal 154
assert_warns 154

assert_raises function 154
assert_string_equal function 154, 160
assert_warns function 154
astype function 46, 91
atol parameter 157
ATR

about 65
calculating 65, 66

average function 52

B
bartlett function 144, 145

bartlett window
calculating 144
plotting 144, 145

BHP 82
Binets formula. See golden ratio formula
binomial

gambling with 127, 129
binomial function 128, 129
bitwise functions 114, 115
bitwise_xor function 114
blackman function 145, 146
Blackman window

about 145
plotting 145
stock prices, smoothing with 145, 146

bmat function 99-102
Bollinger bands

about 70
enveloping with 71, 72

bool type 29

C
calc_profit function 93
character code 30, 31, 64
clip method 78
column_stack function 40
column stacking 40
comma separated values files. See CSV files
comparison functions 114, 115
complex64 type 29
complex128 type 29
complex numbers

about 45, 137
array, creating 137
sorting 137

complex type 29
compound matrix

creating 101
compress function 79
concatenate function 38, 39
continuous distributions 130
converter function 59
convolve function 67-69
corrcoef function 83, 85
correlated pairs

trading 82

[203]

correlation
about 82
computing, for stock returns 82-85

correlation coefficient 83
covariance 82
cov function 82
CSV files

about 50
data, loading from 51

cumprod function 79

D
data

about 49
fitting, to polynomial 85-87
loading, from CSV files 51
summarizing 61-64

data type 26
data type objects 30
dates

about 58
dealing with 58-61

datestr2num function 59
datetime object 59
Debian

about 13
NumPy, installing on 13
Python, installing on 10

depth stacking 39
depth-wise splitting 42
determinant

about 124
calculating, of matrix 124

det function 124
detrend function 187
diag function 122
diagonal function 82, 85
diff function 57, 58, 88
DISH

histogram 173
distribution (distro) 13
divide function 106
DMG file 14
dot function 74, 119, 120
dsplit function 41, 42
dstack function 39

dtype class
about 32
attributes 32

dtype constructors 31, 32

E
eigenvalues

about 120
calculating 120, 121

eigenvectors
about 120
calculating 120, 121

eig function 120
elements

extracting, from array 139
selecting, of array 28

ellipsis
used, for slicing 35

equal universal function 115
error function 194
exp function 69
exponential moving average

about 68
calculating 69, 70
switching to 72

extract function 138, 139
extremums 86
eye function 50

F
factorial

about 79
calculating 79

Fast Fourier transform
about 124
calculating 125, 126

features, IPython 20
Fedora 13
fft function 125, 126
fftshift function 126
Fibonacci matrix

creating 108
Fibonacci numbers

about 108
computing 108, 109
computing, with matrix 109

[204]

File IO
about 49
files, reading 50
files, writing 50

files
about 50
reading 50
writing 50

fill_between function
about 176
condition-based plot region, shading 176, 177

financial functions, NumPy
fv 139
irr 139
mirr 139
nper 139
npv 139
pmt 139
pv 139
rate 139

finfo function 161, 162
Fink

about 16
NumPy, installing on Mac OS X with 16

flat attribute 45
defining 102

flatten function 37
float16 type 29
float32 type 29
float64 type 29
floating point

comparing 161, 162
float type 29
floor_divide function 106
fmod function 107, 108
Fourier analysis

about 189
detrended signal, filtering 189, 191

frequencies
shifting 126, 127

frompyfunc function 102
future value

determining 140
fv function 139, 140

G
game show

simulating 129, 130
GCC 16
Gentoo

about 13
NumPy, installing on 13

git 16
golden ratio formula

about 109
calculating 109

GUI installer
downloading 14
NumPy, installing on Mac OS X with 14-16

H
hamming function 146, 147
Hamming window

about 146
calculating 147
plotting 147

hanning function 95, 98
arrays of stock returns, smoothing with 95-98

highest value
calculating 53

histogram function 91, 93
histograms

bell curve, drawing 174
DISH 173
stock price distributions, charting 173

historical volatility 58
horizontal splitting 41
horizontal stacking 38
hsplit function 41
hstack function 40
hypergeometric distribution 129
hypergeometric function 129, 130

I
identity matrix

creating 50
IEEE 754 specification 161
ifft function 126

[205]

ifftshift function 126
imag attribute 45
image processing

about 196
Lena, manipulating 196, 197

insert function 138
installing, NumPy

on Debian 13
on Gentoo 13
on Linux 13, 14
on Mac OS X 14-16
on Mandriva 13
on Red Hat 13
on Ubuntu 13
on Windows 11, 12

installing, Python
on Debian 10
on Mac OS X 10
on Ubuntu 10
on Windows 10

int8 type 29
int16 type 29
int32 type 29
int64 type 29
interest rate

figuring out 143, 144
internal rate of return

determining 142
interp1d class 194, 195
interp2d class 194
interpolation

about 194
in one dimension 194, 195

Inti type 29
inv function 118
IPython

about 20-23
advantages 25
features 20

irr function 139-142
isreal function 97, 98
itemsize attribute 44

K
Kolmogorov Smirnov test 186

L
LAPACK 10
leastsq function 192
left_shift universal function 115
legend function 178
legends

about 178, 179
adding 179
crossover points, annotating 179
crossover points, finding 178
making, transparent 179

len function 76
less function 114
lexsort function 135, 136
LinAlgError exception 119
linalg package 72
linear algebra 117
linear model

price, predicting with 73, 74
linear system

solving 119, 120
linespace function 69, 114
linspace function 110, 112
Linux

NumPy, installing on 13, 14
Linux distributions

about 13
Arch Linux 13
Debian 13
Fedora 13
Gentoo 13
OpenSUSE 13
Slackware 13

Lissajous curves
about 109
drawing 110, 111

loadmat function 181
loadtxt function 50, 51, 59
logarithmic plots

about 174
stock volume, plotting 174, 175

logarithmic returns. See log returns
log function 57, 58
loglog function 174

[206]

lognormal distribution
about 131
drawing 132, 133

lognormal function 131
log returns 56, 57
loops

avoiding, with vectorize function 93-95
lowest value

calculating 53
lstsq function 74

M
machine epsilon 161
Mac OS X

NumPy, installing on 14-16
Python, installing on 10

MacPorts
NumPy, installing on Mac OS X with 16

Mandriva
NumPy, installing on 13

map function 93
Maple 20
mat function 99-101, 118
Mathematica 20
Matlab 20

about 181
.mat file, loading 182
.mat file, saving 182

Matplotlib
annotations 178
fill_between function 176
legend 178, 179
legends 178, 179
logarithmic plots 174
scatter plots 175

matrices
about 99
creating 100, 101
increasing, from arrays 100
inverting 100, 117, 118
matrix, creating from 101, 102
transposing 100

matrix
creating, from other matrices 101, 102
creating, from string 100

decomposing 122, 123
Fibonacci number, computing with 109

matrix function 99, 108
matrix multiplication 99
max function 53, 54, 63, 65
maximum function 65
maxulp parameter 162
mean function 52, 56, 58
median function 55
Mersenne Twister algorithm 127
metadata 26
min function 53, 54, 63
mirr function 139
mode

determining, for stock returns 90-93
mod function 107, 108
modulo

computing 107, 108
modulo operations

fmod operation 108
mod function 108
% operator 108
remainder function 107

modulus
computing 115

monthly volatility 58
Moore-Penrose pseudo inverse 123
msort function 55, 135
multidimensional arrays

creating 27
indexing 34, 36
slicing 34, 36

N
nanargmax function 138
nanargmin function 138
nbytes attribute 44
ndarray 26, 99
ndarray class 135
ndarray methods 78
ndim attribute 43
net present value

calculating 141
normal distribution

drawing 130, 131

[207]

normal function 130
nper function 139, 143
npv function 139, 141
number

almost equal number, asserting 154, 155
number of periodic payments

determining 143
numerical integration

about 194
Gaussian integral, calculating 194

numerical types, NumPy
about 28
bool 29
complex 29
complex64 29
complex128 29
float 29
float16 29
float32 29
float64 29
int8 29
int16 29
int32 29
int64 29
Inti 29
uint8 29
uint16 29
uint32 29
uint64 29

NumPy
about 9, 117
almost equal arrays, asserting 156, 157
almost equal number, asserting 154, 155
approximately equal arrays, asserting 155, 156
array object 26
arrays 16
arrays, clipping 78, 79
arrays, comparing 157, 158
arrays, compressing 78, 79
arrays, converting to list 46, 47
arrays, dividing 106, 107
array shapes, manipulating 36, 37
arrays of stock returns, smoothing with hanning

function 95-98
arrays, ordering 158, 159
arrays, splitting 41
arrays, stacking 38

assert functions 153, 154
ATR, calculating 65, 66
bartlett window, plotting 144, 145
binomial numbers 127, 129
bits, twiddling 114, 115
bitwise functions 114, 115
character codes 30, 31
comparison functions 114, 115
complex numbers, sorting 137
correlations, computing for stock returns 82-85
data, fitting to polynomials 85-87
data, loading from CSV files 51
data, summarizing 61-64
data type objects 30
dealing, with dates 58-61
determinant, calculating of matrix 124
dtype constructors 31, 32
eigenvalues, calculating 120, 121
eigenvectors, calculating 120, 121
element, extracting from array 139
equal arrays, asserting 157, 158
exponential moving average, calculating 69, 70
factorial, calculating 79
Fast Fourier transform, calculating 125, 126
features 11
Fibonacci numbers, computing 108, 109
File IO 49
floating point, comparing 161, 162
floats, comparing with ULPs 162
frequencies, shifting 126, 127
future value, determining 140
game show, simulating 129, 130
Hamming window, plotting 147
highest value, calculating 53
installing, on Debian 13
installing, on Gentoo 13
installing, on Linux 13, 14
installing, on Mandriva 13
installing, on Red Hat 13
installing, on Ubuntu 13
installing, on Windows 11, 12
installing, with Fink 16
installing, with MacPorts 16
interest rate, figuring out 143, 144
internal rate of return, calculating 142
linear systems, solving 119, 120

[208]

Lissajous curves, drawing 110, 111
lognormal distribution, drawing 132, 133
loops, avoiding with vectorize function 93-95
lowest value, calculating 53
matrices, creating 100, 101
matrices, inverting 117, 118
matrix, creating from other matrices 101, 102
matrix, decomposing 122, 123
mode, determining for stock returns 90-93
modulo, computing 107, 108
multidimensional array, creating 27
multidimensional arrays, indexing 34, 36
multidimensional arrays, slicing 34, 36
net present value, calculating 141
normal distribution, drawing 130, 131
number of periodic payments, determining 143
numerical types 28, 29
objects, comparing 159, 160
on-balance volume, computing 88-90
one-dimensional array, indexing 33
one-dimensional array, slicing 33
online resources 23, 24
packages 13
periodic payments, calculating 142
present value, retrieving 140
price, predicting with linear model 73, 74
pseudo inverse, computing of matrix 123, 124
reccord data type, creating 33
sawtooth, drawing 113, 114
SciPy 181
searchsorted function, using 138
simple moving average, computing 67, 68
simple statistics, performing 54-56
sorting, lexically 136
sorting routines 135
source code, retrieving for 16
square wave, drawing 111, 112
stock prices, smoothing with Blackman window

145, 146
stock returns, analyzing 57, 58
strings, comparing 160
trend lines, drawing 75, 77
triangle waves, drawing 113, 114
ufuncs methods, applying on add function 104,

105
unfuncs, creating 102, 103
URL, for documentation 24

vectors, adding with 17, 18
VWAP, calculating 52

NumPy array
about 16, 26
attributes 43
converting, to list 46, 47
creating 34
elements, selecting 28
example 26
reshaping 34
splitting 41
stacking 38

numpy.dual package 117
NumPy functions 49

Bollinger bands, calculating 71, 72
NumPy installer

downloading 11
NumPy, installing

on Debian 13
on Gentoo 13
on Linux 13, 14
on Mac OS X 14-16
on Mandriva 13
on Red Hat 13
on Ubuntu 13
on Windows 11, 12

numpy.linalg function 119
numpy.linalg package 117, 118
numpysum function 17, 19
numpy.testing package 153

O
objects

comparing 159, 160
on-balance volume

about 88
computing 88-90

one-dimensional array
indexing 33
slicing 33

ones function 67, 68
OpenSUSE 13
optimization

about 191
sine, fitting to 191-193

outer method 105

[209]

P
packages, NumPy

dev-python/numpy 13
numpy 13
python-numpy 13
python-numpy, python-numpy-devel 13

periodic payments
calculating 142

piecewise function 88, 89
pinv function 123
plot function 178
pmt function 139, 142
polyder function 86, 87
polyfit function 85, 87
polynomials

about 85
data, fitting to 85-87

polysub function 98
polyval function 86, 87
positive returns

selecting 57
present value

retrieving 140
print function 25
probability density function 130, 132
prod function 79
pseudo inverse

computing, of matrix 123, 124
ptp function 54
pv function 139, 140
Pylab switch 20
Python

about 9, 153
installing, on Debian 10
installing, on different operating systems 10
installing, on Mac OS X 10
installing, on Ubuntu 10
installing, on Windows 10
vectors, adding with 17

Python 2.4.x 10
Python function

defining 102
Python, installing

on Debian 10
on different operating systems 10
on Mac OS X 10

on Ubuntu 10
on Windows 10

pythonsum function 17

Q
quad function 194
quit() method 20
QQQ

trend, detecting in 187, 188

R
random complex numbers

generating 137
random numbers 127
rate function 139, 143, 144
ravel function 36, 62, 76
real attribute 45
record data type

about 32
creating 33

Red Hat
NumPy, installing on 13

reduceat method 104, 105
reduce method 104
remainder function 107
reshape function 34-37
resize melthod 37
rint function 108
roots function 86, 87
row_stack function 41
row stacking 40
rtol parameter 157

S
sample comparison

stock log returns, comparing 185-187
savemat function 181
savetxt function 50, 63
sawtooth

about 112
drawing 113, 114

scatter plot
about 175
close price, extracting 175
creating 175

[210]

figure, creating 175
grid, creating 175
price return, plotting 175, 176
subplot, adding 175
title, creating 175
volume, extracting 175
volume return, plotting 175, 176

SciKits 185
scikits.statsmodels.stattools 185
SciPy

about 9, 117, 181
image processing 196
online resources 23, 24
scipy.stats 183

scipy.fftpack module 189
SciPy forum

URL 24
scipy.interpolate function 194
scipy.interpolate module 195
scipy.io package 181
scipy.ndimage module 197
scipy.optimize module 193
scipy.signal module 187
scipy.stats

about 183
data generation, improving 185
random values, analyzing 183-185

scipy.stats.norm.rvs function 185
search function, NumPy

argmax 138
argmin 138
argwhere 138
extract 138
nanargmax 138
searchsorted 138

searchsorted function
about 138
using 138

select function 97, 98
semilogx function 174
semilogy function 174
signal processing

about 187
trend detecting, in QQQ 187, 189

sign function 88, 89
simple moving average

about 66

computing 67, 68
simple returns 57
simple statistics

performing 54-56
simulation 93
sinc function 195
sin function 110-114
singular value decomposition 121
size attribute 44
Slackware 13
slices

selecting 34
smaller matrices

creating 101
smoothing 95
solve function 119, 120
sort_complex function 135, 137
sorted array

creating 138
sort function 91, 135
sorting routines, NumPy

argsort 135
lexsort 135
msort 135
sort 135
sort_complex 135

sort method 135
split function 41, 42, 62
splitting 41
splitting, types

depth 42
horizontal 41
vertical 42

sqrt function 58
square wave

about 111
drawing 111, 112

stacking 38
stacking, types

column 40
depth 39
horizontal 38
row 40
vertical 39

stack overflow software development forum
URL 24

[211]

statistics
about 54
performing 54-56

std function 57, 58
stock log returns, comparing

histograms plotting, Matplotlib used 186
Jarque Bera test 186
Kolmogorov Smirnov test 186
log returns, calculating 185
quotes, downloading 185

stock prices
smoothing, with Blackman window 145, 146

stock returns
about 56
analyzing 57, 58
correlation, computing for 82-85
mode, determining for 90-93
smoothing 96

str attribute 32
strings

comparing 160
matrix, creating from 100

strip_zeroes function 98
sum function 113
summarize function 63, 64
svd function 122

T
take function 60, 63
T attribute 44
Taylor expansion 85
Time weighted average price. See TWAP
tolist function 46
trace function 83, 85
transpose function 44
trend detecting, in QQQ

date, formatter 188
diagram 189
figure 188
locators, creating 188
quotes, downloading 187
signal, detrending 188
subplot 188
X axis labels 188

trend lines
about 74
drawing 75, 77

triangle waves
about 112
drawing 113, 114

trim_zeros function 98
true_divide function 106
TWAP

computing 52

U
Ubuntu

NumPy, installing on 13
Python, installing on 10

ufunc methods
applying, on add function 104, 105

ufuncs
about 99, 102
creating 102, 103
methods 103

ufuncs, methods
about 103
accumulate 103, 104
outer 103, 105
reduce 103, 104
reduceat 103-105

uint8 type 29
uint16 type 29
uint32 type 29
uint64 type 29
ULP

about 161
floats, comparing with 162

ultimate_answer function 102
unique function 90
Unit of Least Precision. See ULP
unit testing 153
unit tests 153
universal functions. See ufuncs
unpack parameter 51
usecols argument 51, 53

[212]

V
VALE 82
value range 53
vectorize function

about 93
loops, avoiding with 93-95

vectors
about 26
adding, NumPy used 17, 18
adding, Python used 17

vertical splitting 42
vertical stacking 39
Volume weighted average price. See VWAP
vsplit function 41, 42
vstack function 39
VWAP

about 51
calculating 52

W
weekday method 59
weekly summary 61

weights parameter 52
where function 57, 60, 75
where parameter 176
Window functions

about 144
barlett 144
blackman 144, 145
hamming 144, 146
hanning 144
kaiser 144

Windows
NumPy, installing on 11, 12
Python, installing on 10

Windows Python installer
URL 10

Z
zeros_like function 102, 103

Thank you for buying
NumPy 1.5 Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Sage Beginner's Guide
ISBN: 978-1-84951-446-0 Paperback: 364 pages

Unlock the full potential of Sage for simplifying and
automating mathematical computing

1. The best way to learn Sage which is a open source
alternative to Magma, Maple, Mathematica, and
Matlab

2. Learn to use symbolic and numerical computation
to simplify your work and produce publication-
quality graphics

3. Numerically solve systems of equations, find roots,
and analyze data from experiments or simulations

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for
taking control of automated testing using powerful
Python testing tools

1. Learn to write tests at every level using a variety of
Python testing tools

2. The first book to include detailed screenshots and
recipes for using Jenkins continuous integration
server (formerly known as Hudson)

3. Explore innovative ways to introduce automated
testing to legacy systems

4. Written by Greg L. Turnquist – senior software
engineer and author of Spring Python 1.1

Please check www.PacktPub.com for information on our titles

Nginx 1 Web Server Implementation Cookbook
ISBN: 978-1-84951-496-5 Paperback: 336 pages

Over 100 recipes to master using the Nginx HTTP
server and reverse proxy

1. Quick recipes and practical techniques to help you
maximize your experience with Nginx

2. Interesting recipes that will help you optimize your
web stack and get more out of your existing setup

3. Secure your website and prevent your setup from
being compromised using SSL and rate-limiting
techniques

4. Get more out of Nginx by using it as an important
part of your web application using third-party
modules

Python Geospatial Development
ISBN: 978-1-84951-154-4 Paperback: 508 pages

Build a complete and sophisticated mapping
application from scratch using Python tools for GIS
development

1. Build applications for GIS development using Python

2. Analyze and visualize Geo-Spatial data

3. Comprehensive coverage of key GIS concepts

4. Recommended best practices for storing spatial
data in a database

5. Draw maps, place data points onto a map, and
interact with maps

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: NumPy Quick Start
	Python
	Time for action – installing Python on different
	operating systems
	Windows
	Time for action – installing NumPy on Windows
	Linux
	Time for action – installing NumPy on Linux
	Mac OS X
	Time for action – installing NumPy on Mac OS X
	with a GUI installer
	Time for action – installing NumPy with MacPorts or Fink
	Building from source
	Vectors
	Time for action – adding vectors
	IPython—an interactive shell
	Online resources and help
	Summary

	Chapter 2: Beginning with Numpy Fundamentals
	NumPy array object
	Time for action – creating a multidimensional array
	Selecting elements
	NumPy numerical types
	Data type objects
	Character codes
	dtype constructors
	dtype attributes

	Time for action – creating a record data type
	One-dimensional slicing and indexing
	Time for action – slicing and indexing multidimensional arrays
	Time for action – manipulating array shapes
	Stacking

	Time for action – stacking arrays
	Splitting

	Time for action – splitting arrays
	Array attributes

	Time for action – converting arrays
	Summary

	Chapter 3: Get into Terms with Commonly Used Functions
	File I/O
	Time for action – reading and writing files
	Identity matrix creation

	CSV files
	Time for action – loading from CSV files
	Volume weighted average price
	Time for action – calculating volume weighted average price
	The mean function
	Time weighted average price

	Value range
	Time for action – finding highest and lowest values
	Statistics
	Time for action – doing simple statistics
	Stock returns
	Time for action – analyzing stock returns
	Dates
	Time for action – dealing with dates
	Weekly summary
	Time for action – summarizing data
	Average true range
	Time for action – calculating the average true range
	Simple moving average
	Time for action – computing the simple moving average
	Exponential moving average
	Time for action – calculating the exponential moving average
	Bollinger bands
	Time for action – enveloping with Bollinger bands
	Linear model
	Time for action – predicting price with a linear model
	Trend lines
	Time for action – drawing trend lines
	Methods of ndarray
	Time for action – clipping and compressing arrays
	Factorial
	Time for action – calculating the factorial
	Summary

	Chapter 4: Convenience Functions for Your Convenience
	Correlation
	Time for action – trading correlated pairs
	Polynomials
	Time for action – fitting to polynomials
	On-balance volume
	Time for action – balancing volume
	The mode
	Time for action – determining the mode of stock returns
	Simulation
	Time for action – avoiding loops with vectorize
	Smoothing
	Time for action – smoothing with the hanning function
	Summary

	Chapter 5: Working with Matrices and ufuncs
	Matrices
	Time for action – creating matrices
	Creating a matrix from other matrices
	Time for action – creating a matrix from other matrices
	Universal functions
	Time for action – creating universal function
	Universal function methods
	Time for action – applying the ufunc methods on add
	Arithmetic functions
	Time for action – dividing arrays
	Modulo operation
	Time for action – computing the modulo
	Fibonacci numbers
	Time for action – computing Fibonacci numbers
	Lissajous curves
	Time for action – drawing Lissajous curves
	Square waves
	Time for action – drawing a square wave
	Sawtooth and triangle waves
	Time for action – drawing sawtooth and triangle waves
	Bitwise and comparison functions
	Time for action – twiddling bits
	Summary

	Chapter 6: Move Further with NumPy Modules
	Linear algebra
	Time for action – inverting matrices
	Solving linear systems
	Time for action – solving a linear system
	Finding eigenvalues and eigenvectors
	Time for action – determining eigenvalues and eigenvectors
	Singular value decomposition
	Time for action – decomposing a matrix
	Pseudo inverse
	Time for action – computing the pseudo inverse of a matrix
	Determinants
	Time for action – calculating the determinant of a matrix
	Fast Fourier transform
	Time for action – calculating the Fourier transform
	Shifting
	Time for action – shifting frequencies
	Random numbers
	Time for action – gambling with the binomial
	Hypergeometric distribution
	Time for action – simulating a game show
	Continuous distributions
	Time for action – drawing a normal distribution
	Lognormal distribution
	Time for action – drawing the lognormal distribution
	Summary

	Chapter 7: Peeking Into Special Routines
	Sorting
	Time for action – sorting lexically
	Complex numbers
	Time for action – sorting complex numbers
	Searching
	Time for action – using searchsorted
	Array elements extraction
	Time for action – extracting elements from an array
	Financial functions
	Time for action – determining future value
	Present value
	Time for action – getting the present value
	Net present value
	Time for action – calculating the net present value
	Internal rate of return
	Time for action – determining the internal rate of return
	Periodic payments
	Time for action – calculating the periodic payments
	Number of payments
	Time for action – determining the number of periodic payments
	Interest rate
	Time for action – figuring out the rate
	Window functions
	Time for action – plotting the Bartlett window
	Blackman window
	Time for action – smoothing stock prices with
	the Blackman window
	Hamming window
	Time for action – plotting the Hamming window
	Kaiser window
	Time for action – plotting the Kaiser window
	Special mathematical functions
	Time for action – plotting the modified Bessel function
	Sinc
	Time for action - plotting the sinc function
	Summary

	Chapter 8: Assure Quality with Testing
	Assert functions
	Time for action – asserting almost equal
	Approximately equal arrays
	Time for action – asserting approximately equal
	Almost equal arrays
	Time for action – asserting arrays almost equal
	Equal arrays
	Time for action – comparing arrays
	Ordering arrays
	Time for action – checking the array order
	Objects comparison
	Time for action – comparing objects
	String comparison
	Time for action – comparing strings
	Floating point comparisons
	Time for action – comparing with
	assert_array_almost_equal_nulp
	Comparison of floats with more ULPs
	Time for action – comparing using maxulp of 2
	Summary

	Chapter 9: Plotting with Matplotlib
	Simple plots
	Time for action – plotting a polynomial function
	Plot format string
	Time for action – plotting a polynomial and its derivative
	Subplots
	Time for action – plotting a polynomial and its derivatives
	Finance
	Time for action – plotting a year's worth of stock quotes
	Histograms
	Time for action – charting stock price distributions
	Logarithmic plots
	Time for action – plotting stock volume
	Scatter plots
	Time for action – plotting price and volume returns
	with scatter plot
	Fill between
	Time for action – shading plot regions based on a condition
	Legend and annotations
	Time for action – using legend and annotations
	Summary

	Chapter 10: When NumPy is Not Enough: SciPy and Beyond
	Matlab and Octave
	Time for action – saving and loading a .mat file
	Statistics
	Time for action – analyzing random values
	Samples comparison and SciKits
	Time for action – comparing stock log returns
	Signal processing
	Time for action – detecting a trend in QQQ
	Fourier analysis
	Time for action – filtering a detrended signal
	Optimization
	Time for action – fitting to a sine
	Numerical integration
	Time for action – calculating the Gaussian integral
	Interpolation
	Time for action – interpolating in one dimension
	Image processing
	Time for action – manipulating Lena
	Summary

	Pop Quiz Answers
	Chapter 1, NumPy Quick Start
	Chapter 2, Beginning with NumPy Fundamentals
	Chapter 3, Get into Terms with Commonly Used Functions
	Chapter 4, Convenience Functions for Your Convenience
	Chapter 5, Working with Matrices and ufuncs
	Chapter 6, Move Further with NumPy Modules
	Chapter 7, Peeking into Special Routines
	Chapter 8, Assured Quality with Testing
	Chapter 9, Plotting with Matplotlib
	Chapter 10, When NumPy is not enough SciPy and Beyond

	Index

